1. |
Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson's disease. Mov Disord 2011;26:1049-55.
|
2. |
Thenganatt MA, Jankovic J. Parkinson disease subtypes. JAMA Neurol 2014;71:499-504.
|
3. |
Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP. Epidemiology of Parkinson's disease. J Neurol 2008;255 Suppl 5:18-32.
|
4. |
Shulman JM, De Jager PL, Feany MB. Parkinson's disease: Genetics and pathogenesis. Annu Rev Pathol 2011;6:193-222.
|
5. |
Li LH, Qin HZ, Wang JL, Wang J, Wang XL, Gao GD. Axonal degeneration of nigra-striatum dopaminergic neurons induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Int Med Res 2009;37:455-63.
|
6. |
Herrero MT, Luquín MR, Obeso JA. Experimental model of Parkinson disease: Mechanisms and anatomo- pathological characteristics of MPTP neurotoxicity. Arch Neurobiol (Madr) 1992;55:175-82.
|
7. |
Kopin IJ. Features of the dopaminergic neurotoxin MPTP. Ann N Y Acad Sci 1992;648:96-104.
|
8. |
Lessel J. MPTP – Neurotoxin and model substance in Parkinson research. Pharm Unserer Zeit 1994;23:106-7.
|
9. |
Smeyne RJ, Jackson-Lewis V. The MPTP model of Parkinson's disease. Brain Res Mol Brain Res 2005;134:57-66.
|
10. |
He XJ, Nakayama H, Dong M, Yamauchi H, Ueno M, Uetsuka K, et al. Evidence of apoptosis in the subventricular zone and rostral migratory stream in the MPTP mouse model of Parkinson disease. J Neuropathol Exp Neurol 2006;65:873-82.
|
11. |
Prediger RD, Aguiar AS Jr, Rojas-Mayorquin AE, Figueiredo CP, Matheus FC, Ginestet L, et al. Single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson's disease. Neurotox Res 2010;17:114-29.
|
12. |
Roy A, Ghosh A, Jana A, Liu X, Brahmachari S, Gendelman HE, et al. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson's disease. PLoS One 2012;7:e38113.
|
13. |
Dluzen DE, Kefalas G. The effects of intranasal infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) upon catecholamine concentrations within olfactory bulbs and corpus striatum of male mice. Brain Res 1996;741:215-9.
|
14. |
Prediger RD, Aguiar AS Jr, Moreira EL, Matheus FC, Castro AA, Walz R, et al. The intranasal administration of 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP): A new rodent model to test palliative and neuroprotective agents for Parkinson's disease. Curr Pharm Des 2011;17:489-507.
|
15. |
Prediger RD, Batista LC, Medeiros R, Pandolfo P, Florio JC, Takahashi RN. The risk is in the air: Intranasal administration of MPTP to rats reproducing clinical features of Parkinson's disease. Exp Neurol 2006;202:391-403.
|
16. |
Prediger RD, Rial D, Medeiros R, Figueiredo CP, Doty RL, Takahashi RN. Risk is in the air: An intranasal MPTP (1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine) rat model of Parkinson's disease. Ann N Y Acad Sci 2009;1170:629-36.
|
17. |
Ransom BR, Kunis DM, Irwin I, Langston JW. Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP. Neurosci Lett 1987;75:323-8.
|
18. |
Cui M, Aras R, Christian WV, Rappold PM, Hatwar M, Panza J, et al. The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A 2009;106:8043-8.
|
19. |
Jenner P. Oxidative stress as a cause of Parkinson's disease. Acta Neurol Scand Suppl 1991;136:6-15.
|
20. |
Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1995;4:257-69.
|
21. |
Virarkar M, Alappat L, Bradford PG, Awad AB. L-arginine and nitric oxide in CNS function and neurodegenerative diseases. Crit Rev Food Sci Nutr 2013;53:1157-67.
|
22. |
Yi J, Horky LL, Friedlich AL, Shi Y, Rogers JT, Huang X. L-arginine and Alzheimer's disease. Int J Clin Exp Pathol 2009;2:211-38.
|
23. |
Rassaf T, Kleinbongard P, Kelm M. The L-arginine nitric oxide pathway: Avenue for a multiple-level approach to assess vascular function. Biol Chem 2006;387:1347-9.
|
24. |
Kelm M. The L-arginine-nitric oxide pathway in hypertension. Curr Hypertens Rep 2003;5:80-6.
|
25. |
Olken NM, Osawa Y, Marletta MA. Characterization of the inactivation of nitric oxide synthase by NG-methyl-L-arginine: Evidence for heme loss. Biochemistry 1994;33:14784-91.
|
26. |
Barthwal MK, Srivastava N, Dikshit M. Role of nitric oxide in a progressive neurodegeneration model of Parkinson's disease in the rat. Redox Rep 2001;6:297-302.
|
27. |
Santos RM, Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Nitric oxide inactivation mechanisms in the brain: Role in bioenergetics and neurodegeneration. Int J Cell Biol 2012;2012:391914.
|
28. |
Contestabile A, Monti B, Contestabile A, Ciani E. Brain nitric oxide and its dual role in neurodegeneration/neuroprotection: Understanding molecular mechanisms to devise drug approaches. Curr Med Chem 2003;10:2147-74.
|
29. |
Molina JA, Jiménez-Jiménez FJ, Ortí-Pareja M, Navarro JA. The role of nitric oxide in neurodegeneration. Potential for pharmacological intervention. Drugs Aging 1998;12:251-9.
|
30. |
Youdim MB, Lavie L, Riederer P. Oxygen free radicals and neurodegeneration in Parkinson's disease: A role for nitric oxide. Ann N Y Acad Sci 1994;738:64-8.
|
31. |
Lundblad C, Bentzer P. Effects of L-arginine on cerebral blood flow, microvascular permeability, number of perfused capillaries, and brain water content in the traumatized mouse brain. Microvasc Res 2007;74:1-8.
|
32. |
Willmot M, Gray L, Gibson C, Murphy S, Bath PM. A systematic review of nitric oxide donors and L-arginine in experimental stroke; effects on infarct size and cerebral blood flow. Nitric Oxide 2005;12:141-9.
|
33. |
Kovách AG, Szabó C, Benyó Z, Csáki C, Greenberg JH, Reivich M. Effects of NG-nitro-L-arginine and L-arginine on regional cerebral blood flow in the cat. J Physiol 1992;449:183-96.
|
34. |
Ishida K, Shimizu H, Hida H, Urakawa S, Ida K, Nishino H. Argyrophilic dark neurons represent various states of neuronal damage in brain insults: Some come to die and others survive. Neuroscience 2004;125:633-44.
|
35. |
Gallyas F, Kiglics V, Baracskay P, Juhász G, Czurkó A. The mode of death of epilepsy-induced “dark” neurons is neither necrosis nor apoptosis: An electron-microscopic study. Brain Res 2008;1239:207-15.
|
36. |
Kherani ZS, Auer RN. Pharmacologic analysis of the mechanism of dark neuron production in cerebral cortex. Acta Neuropathol 2008;116:447-52.
|
37. |
Ahmadpour SH, Haghir H. Diabetes mellitus type 1 induces dark neuron formation in the dentate gyrus: A study by Gallyas' method and transmission electron microscopy. Rom J Morphol Embryol 2011;52:575-9.
|
38. |
Cammermeyer J. I. An evaluation of the significance of the “dark” neuron. Ergeb Anat Entwicklungsgesch 1962;36:1-61.
|
39. |
Garman RH. The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. Neurotoxicology 2006;27:1126.
|
40. |
Jortner BS. The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. Neurotoxicology 2006;27:628-34.
|
41. |
Jafarian M, Rahimi S, Behnam F, Hosseini M, Haghir H, Sadeghzadeh B, et al. The effect of repetitive spreading depression on neuronal damage in juvenile rat brain. Neuroscience 2010;169:388-94.
|
42. |
Pucaj K, Rasmussen H, Møller M, Preston T. Safety and toxicological evaluation of a synthetic vitamin K2, menaquinone-7. Toxicol Mech Methods 2011;21:520-32.
|
43. |
Matheus FC, Aguiar AS Jr, Castro AA, Villarinho JG, Ferreira J, Figueiredo CP, et al. Neuroprotective effects of agmatine in mice infused with a single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Behav Brain Res 2012;235:263-72.
|
44. |
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6 th ed. New York: Elsevier; 2006.
|
45. |
Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, et al. The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 1988;96:857-81.
|
46. |
Meissner W, Hill MP, Tison F, Gross CE, Bezard E. Neuroprotective strategies for Parkinson's disease: Conceptual limits of animal models and clinical trials. Trends Pharmacol Sci 2004;25:249-53.
|
47. |
Cherian L, Chacko G, Goodman C, Robertson CS. Neuroprotective effects of L-arginine administration after cortical impact injury in rats: Dose response and time window. J Pharmacol Exp Ther 2003;304:617-23.
|
48. |
Rosa AO, Lin J, Calixto JB, Santos AR, Rodrigues AL. Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res 2003;144:87-93.
|
49. |
Freitas AE, Moretti M, Budni J, Balen GO, Fernandes SC, Veronezi PO, et al. NMDA receptors and the L-arginine-nitric oxide-cyclic guanosine monophosphate pathway are implicated in the antidepressant-like action of the ethanolic extract from Tabebuia avellanedae in mice. J Med Food 2013;16:1030-8.
|
50. |
Ates-Alagoz Z, Adejare A. NMDA Receptor Antagonists for Treatment of Depression. Pharmaceuticals (Basel) 2013;6:480-99.
|
51. |
Jadeski LC, Lala PK. Nitric oxide synthase inhibition by N (G)-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am J Pathol 1999;155:1381-90.
|
52. |
Tripathi P, Misra MK. Therapeutic role of L-arginine on free radical scavenging system in ischemic heart diseases. Indian J Biochem Biophys 2009;46:498-502.
|
53. |
Dedkova EN, Blatter LA. Characteristics and function of cardiac mitochondrial nitric oxide synthase. J Physiol 2009;587:851-72.
|
54. |
Lerman A, Burnett JC Jr, Higano ST, McKinley LJ, Holmes DR Jr. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation 1998;97:2123-8.
|
55. |
Buchanan JE, Phillis JW. The role of nitric oxide in the regulation of cerebral blood flow. Brain Res 1993;610:248-55.
|
56. |
Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KT. The role of the nitric oxide pathway in brain injury and its treatment – From bench to bedside. Exp Neurol 2015;263:235-43.
|
57. |
Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system. Annu Rev Physiol 1995;57:683-706.
|
58. |
Iadecola C. Regulation of the cerebral microcirculation during neural activity: Is nitric oxide the missing link? Trends Neurosci 1993;16:206-14.
|
59. |
Blandini F, Greenamyre JT, Nappi G. The role of glutamate in the pathophysiology of Parkinson's disease. Funct Neurol 1996;11:3-15.
|
60. |
Hazell AS, Itzhak Y, Liu H, Norenberg MD. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes. J Neurochem 1997;68:2216-9.
|
61. |
Cherian L, Chacko G, Goodman JC, Robertson CS. Cerebral hemodynamic effects of phenylephrine and L-arginine after cortical impact injury. Crit Care Med 1999;27:2512-7.
|
62. |
Condello S, Calabrò E, Caccamo D, Currò M, Ferlazzo N, Satriano J, et al. Protective effects of agmatine in rotenone-induced damage of human SH-SY5Y neuroblastoma cells: Fourier transform infrared spectroscopy analysis in a model of Parkinson's disease. Amino Acids 2012;42:775-81.
|
63. |
Martínez-Orgado J, Fernández-Frutos B, González R, Fernández-López D, Urigüen L, Romero E, et al. Neuroprotective effect of L-arginine in a newborn rat model of acute severe asphyxia. Biol Neonate 2005;88:291-8.
|