1. |
Vazzana M, Andreani T, Fangueiro J, Faggio C, Silva C, Santini A, et al. Tramadol hydrochloride: Pharmacokinetics, pharmacodynamics, adverse side effects, co-administration of drugs and new drug delivery systems. Biomed Pharmacother 2015;70:234-8.
|
2. |
Lee J, Yoo HD, Bae JW, Lee S, Shin KH. Population pharmacokinetic analysis of tramadol and O-desmethyltramadol with genetic polymorphism of CYP2D6. Drug Des Devel Ther 2019;13:1751-61.
|
3. |
Miotto K, Cho AK, Khalil MA, Blanco K, Sasaki JD, Rawson R. Trends in tramadol: Pharmacology, metabolism, and misuse. Anesth Analg 2017;124:44-51.
|
4. |
Faria J, Barbosa J, Moreira R, Queirós O, Carvalho F, Dinis-Oliveira RJ. Comparative pharmacology and toxicology of tramadol and tapentadol. Eur J Pain 2018;22:827-44.
|
5. |
Lassen D, Damkier P, Brøsen K. The pharmacogenetics of tramadol. Clin Pharmacokinet 2015;54:825-36.
|
6. |
Jafari-Sabet M, Jafari-Sabet AR, Dizaji-Ghadim A. Tramadol state-dependent memory: Involvement of dorsal hippocampal muscarinic acetylcholine receptors. Behav Pharmacol 2016;27:470-8.
|
7. |
Nazari-Serenjeh F, Zarrabian S, Azizbeigi R, Haghparast A. Effects of dopamine D1- and D2-like receptors in the CA1 region of the hippocampus on expression and extinction of morphine-induced conditioned place preference in rats. Behav Brain Res 2021;397:112924.
|
8. |
Asari Y, Ikeda Y, Tateno A, Okubo Y, Iijima T, Suzuki H. Acute tramadol enhances brain activity associated with reward anticipation in the nucleus accumbens. Psychopharmacology (Berl) 2018;235:2631-42.
|
9. |
Niknamfar S, Nouri Zadeh-Tehrani S, Sadat-Shirazi MS, Akbarabadi A, Rahimi-Movaghar A, Zarrindast MR. μ-Opioid receptor in the CA1 involves in tramadol and morphine cross state-dependent memory. Neurosci Lett 2019;705:177-82.
|
10. |
Soltesz I, Losonczy A. CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nat Neurosci 2018;21:484-93.
|
11. |
Hamilton DJ, White CM, Rees CL, Wheeler DW, Ascoli GA. Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach. J Pharm Biomed Anal 2017;144:269-78.
|
12. |
Müller C, Remy S. Septo-hippocampal interaction. Cell Tissue Res 2018;373:565-75.
|
13. |
Bezaire MJ, Soltesz I. Quantitative assessment of CA1 local circuits: Knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 2013;23:751-85.
|
14. |
Kouvaros S, Papatheodoropoulos C. Major dorsoventral differences in the modulation of the local CA1 hippocampal network by NMDA, mGlu5, adenosine A2A and cannabinoid CB1 receptors. Neuroscience 2016;317:47-64.
|
15. |
Hooshmandi M, Hosseinmardi N, Janahmadi M, Motamedi F, Elahi Mahani A, Sadat Aghamiri FF. The role of hippocampal orexin-1 receptors (OX1R) in mediating the effect of morphine on CA1 baseline synaptic response and short term synaptic plasticity. Journal of Arak University of Medical Sciences 2014;17:84-95.
|
16. |
Fartootzadeh R, Azizi F, Alaei H, Reisi P. Orexin type-2 receptor blockade prevents the nicotine-induced excitation of nucleus accumbens core neurons in rats: An electrophysiological perspective. Pharmacol Rep 2019;71:361-6.
|
17. |
Zhang XY, Yu L, Zhuang QX, Zhu JN, Wang JJ. Central functions of the orexinergic system. Neurosci Bull 2013;29:355-65.
|
18. |
Edalat P, Kavianpour M, Zarrabian S, Haghparast A. Role of orexin-1 and orexin-2 receptors in the CA1 region of hippocampus in the forced swim stress- and food deprivation-induced reinstatement of morphine seeking behaviors in rats. Brain Res Bull 2018;142:25-32.
|
19. |
Li SB, Jones JR, de Lecea L. Hypocretins, neural systems, physiology, and psychiatric disorders. Curr Psychiatry Rep 2016;18:7.
|
20. |
Mackie K. Cannabinoid receptors: Where they are and what they do. J Neuroendocrinol 2008;20 Suppl 1:10-4.
|
21. |
Santana F, Sierra RO, Haubrich J, Crestani AP, Duran JM, de Freitas Cassini L, et al. Involvement of the infralimbic cortex and CA1 hippocampal area in reconsolidation of a contextual fear memory through CB1 receptors: Effects of CP55,940. Neurobiol Learn Mem 2016;127:42-7.
|
22. |
Borgelt LM, Franson KL, Nussbaum AM, Wang GS. The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 2013;33:195-209.
|
23. |
Ozdemir E. The role of the cannabinoid system in opioid analgesia and tolerance. Mini Rev Med Chem 2020;20:875-85.
|
24. |
Azizi F, Fartootzadeh R, Alaei H, Reisi P. Electrophysiological study of the response of ventral tegmental area non-dopaminergic neurons to nicotine after concurrent blockade of orexin receptor-2 and cannabinoid receptors-1. Brain Res 2019;1719:176-82.
|
25. |
Fartootzadeh R, Azizi F, Alaei H, Reisi P. Functional crosstalk of nucleus accumbens CB1 and OX2 receptors in response to nicotine-induced place preference. Neurosci Lett 2019;698:160-4.
|
26. |
Cannon CZ, Kissling GE, Hoenerhoff MJ, King-Herbert AP, Blankenship-Paris T. Evaluation of dosages and routes of administration of tramadol analgesia in rats using hot-plate and tail-flick tests. Lab Anim (NY) 2010;39:342-51.
|
27. |
Azizi F, Fartootzadeh R, Alaei H, Reisi P. Effects of concurrent blockade of OX2 and CB1 receptors in the ventral tegmental area on nicotine-induced place preference in rats. Neurosci Lett 2018;684:121-6.
|
28. |
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Fifth ed. San Diego: Academic Press; 2005.
|
29. |
Fogaça MV, Sonego AB, Rioli V, Gozzo FC, Dale CS, Ferro ES, et al. Anxiogenic-like effects induced by hemopressin in rats. Pharmacol Biochem Behav 2015;129:7-13.
|
30. |
Chen XY, Chen L, Du YF. Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors. J Neurosci Res 2017;95:1415-26.
|
31. |
Riahi E, Arezoomandan R, Fatahi Z, Haghparast A. The electrical activity of hippocampal pyramidal neuron is subjected to descending control by the brain orexin/hypocretin system. Neurobiol Learn Mem 2015;119:93-101.
|
32. |
Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: Contributions to development and maintenance of addiction. Learn Mem 2016;23:515-33.
|
33. |
Xiao Z, Lin K, Fellous JM. Conjunctive reward-place coding properties of dorsal distal CA1 hippocampus cells. Biol Cybern 2020;114:285-301.
|
34. |
Zarrindast MR. Neurotransmitters and cognition. EXS 2006;98:5-39.
|
35. |
Fasano C, Rocchetti J, Pietrajtis K, Zander JF, Manseau F, Sakae DY, et al. Regulation of the hippocampal network by VGLUT3-positive CCK- GABAergic basket cells. Front Cell Neurosci 2017;11:140.
|
36. |
Jafari-Sabet M, Mofidi H, Attarian-Khosroshahi MS. NMDA receptors in the dorsal hippocampal area are involved in tramadol state-dependent memory of passive avoidance learning in mice. Can J Physiol Pharmacol 2018;96:45-50.
|
37. |
El-Hamid Mohamed Elwy A, Tabl G. Impact of tramadol and morphine abuse on the activities of acetylcholine esterase, Na+/K+-ATPase and related parameters in cerebral cortices of male adult rats. Electron Physician 2017;9:4027-34.
|
38. |
Bloms-Funke P, Dremencov E, Cremers TI, Tzschentke TM. Tramadol increases extracellular levels of serotonin and noradrenaline as measured by in vivo microdialysis in the ventral hippocampus of freely-moving rats. Neurosci Lett 2011;490:191-5.
|
39. |
Tada K, Kasamo K, Ueda N, Suzuki T, Kojima T, Ishikawa K. Anxiolytic 5-hydroxytryptamine1A agonists suppress firing activity of dorsal hippocampus CA1 pyramidal neurons through a postsynaptic mechanism: Single-unit study in unanesthetized, unrestrained rats. J Pharmacol Exp Ther 1999;288:843-8.
|
40. |
Buhot MC, Martin S, Segu L. Role of serotonin in memory impairment. Ann Med 2000;32:210-21.
|
41. |
Ogren SO, Eriksson TM, Elvander-Tottie E, D'Addario C, Ekström JC, Svenningsson P, et al. The role of 5-HT (1A) receptors in learning and memory. Behav Brain Res 2008;195:54-77.
|
42. |
Sevcik J, Nieber K, Driessen B, Illes P. Effects of the central analgesic tramadol and its main metabolite, O-desmethyltramadol, on rat locus coeruleus neurones. Br J Pharmacol 1993;110:169-76.
|
43. |
Baghishani F, Mohammadipour A, Hosseinzadeh H, Hosseini M, Ebrahimzadeh-Bideskan A. The effects of tramadol administration on hippocampal cell apoptosis, learning and memory in adult rats and neuroprotective effects of crocin. Metab Brain Dis 2018;33:907-16.
|
44. |
Sadeghi B, Ezzatpanah S, Haghparast A. Effects of dorsal hippocampal orexin-2 receptor antagonism on the acquisition, expression, and extinction of morphine-induced place preference in rats. Psychopharmacology (Berl) 2016;233:2329-41.
|
45. |
Baimel C, Borgland SL. Orexin signaling in the VTA gates morphine-induced synaptic plasticity. J Neurosci 2015;35:7295-303.
|
46. |
Prince CD, Rau AR, Yorgason JT, España RA. Hypocretin/Orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1. ACS Chem Neurosci 2015;6:138-46.
|
47. |
Sadeghi-Adl M, Sadat-Shirazi MS, Shahini F, Akbarabadi A, Khalifeh S, Borzabadi S, et al. The role of cannabinoid 1 receptor in the nucleus accumbens on tramadol induced conditioning and reinstatement. Life Sci 2020;260:118430.
|
48. |
Piri M, Zarrindast MR, Oryan S. Effects of cannabinoidergic system of CA1 area of dorsal hippocampus on the memory of nicotine sensitized rats. Advances in Cognitive Science 2009;11:27-37.
|
49. |
Berrendero F, Flores Á, Robledo P. When orexins meet cannabinoids: Bidirectional functional interactions. Biochem Pharmacol 2018;157:43-50.
|
50. |
Ho YC, Lee HJ, Tung LW, Liao YY, Fu SY, Teng SF, et al. Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition. J Neurosci 2011;31:14600-10.
|