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Introduction
Tramadol hydrochloride is a synthetic 
analgesic that acts on the central nervous 
system.[1] This drug is showing opioid and 
nonopioid properties and is widely used 
for treating moderate to severe pain. It has 
become one of the most popular prescribed 
opioids, worldwide.[2] Studies have shown 
that tramadol can induce addiction, which is 
associated with physical and psychological 
dependence.[3] Previous studies have shown 
that the cellular mechanism of tramadol 
addiction and its analgesic effects is through 
binding to the µ‑opioid receptor as well as 
inhibiting the reuptake of noradrenaline 
and serotonin (5‑HT).[4,5] Numerous studies 
have reported that tramadol inhibits the 
activity of acetylcholine receptors that play 
an important role in memory.[6] Tramadol 
can affect different parts of the brain, such 
as the ventral tegmental area (VTA) and 
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Abstract
Background: CA1, as a major structure involved in learning and memory, has been shown to be affected 
by tramadol addiction. Both orexin and endocannabinoid receptors express in CA1 and play an important 
role in drug dependency. The aim of this study was to evaluate the modulatory effects of orexin‑2 
(OX2R) and endocannabinoid‑1 (CB1R) receptors on neuronal activity in CA1, in response to tramadol 
in rats. Materials and Methods: Male Wistar rats were divided into 8 groups (n = 6–7); saline‑dimethyl 
sulfoxide (DMSO), tramadol‑DMSO, saline‑TCS‑OX2‑29, saline‑AM251, tramadol‑TCS‑OX2‑29, 
tramadol‑AM251, saline‑TCS‑OX2‑29‑AM251, tramadol‑TCS‑OX2‑29‑AM251. Tramadol was 
injected intraperitoneally, and then, AM251 (1 nmol/0.3 µL), CB1R antagonist and TCS‑OX2‑29 (1 
nmol/0.3 µL), OX2R antagonist, were microinjected individually or concurrently into the CA1. Using 
in vivo extracellular single‑unit recording, the firing of CA1 pyramidal neurons was investigated. 
Results: Tramadol decreased neuronal activity in CA1 (P < 0.01) but increased it after micro‑injection 
of DMSO. TCS‑OX2‑29 increased neuronal activity in saline group (P < 0.05) but decreased it in 
tramadol group. AM251 had no effect on saline group but decreased neuronal activity in tramadol 
group (P < 0.05). Concurrent micro‑injection of TCS‑OX2‑29 and AM251 had no effect on saline 
group but decreased neuronal activity in tramadol group (P < 0.05). Conclusions: Our findings suggest 
that neural activity in CA1 is rapidly affected by acute use of tramadol, and some of these effects may 
be induced through the endocannabinoid and orexin systems. Thus, the function of endocannabinoid 
and orexin systems in CA1 may play a role in tramadol addiction.
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nucleus accumbens (NAc), involved in the 
reward circuits. There is a link between 
CA1 and reward regions of the brain, and 
this region has been shown to mediate 
morphine reward effects.[7] A functional 
loop exists between the CA1 and VTA 
that is one of the sources of dopaminergic 
neurons to the hippocampus. Therefore, 
long‑term usage of tramadol may create 
dependence and tolerance through affecting 
CA1, in addition to the other part of reward 
circuits.[8]

Learning and memory can be affected 
by drugs such as tramadol.[9] CA1 is part 
of the hippocampus and an important 
area that plays a role in learning and 
memory.[10] The main neurons of the CA1 
area are pyramidal cells.[11] These cells 
receive excitatory and inhibitory inputs; 
glutamatergic afferents of the entorhinal 
cortex and CA3 supply most of the 
excitatory inputs to CA1. Furthermore, the 
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major targets of septal cholinergic neurons are pyramidal 
cells.[12,13] Glutamatergic neurons are principal cells in 
the CA1 and have an important role in regulating the 
activity of pyramidal cells.[14] About 7%–11% of CA1 cells 
are GABAergic interneurons that express the µ‑opioid 
receptor (MOR) receptor.[9,13]

Orexinergic and cannabinoid systems have been shown 
to mediate morphine and nicotine addictions.[15,16] Orexin/
hypocretin neurons (including two types of orexin, A and 
B) originate in the lateral hypothalamus and are involved 
in reward, pain, and nutrition.[17] Orexins have two types of 
receptors, OX1R and OX2R, which bind to the G protein, 
and both receptors are expressed in CA1.[18] It has been 
shown that orexin can mediate the response to morphine in 
CA1, by affecting serotonergic, dopaminergic, adrenergic, 
and cholinergic systems.[19]

Endocannabinoids have two types of G protein‑coupled 
receptors (CB1R, CB2R).[20] CB1Rs are functional 
in the brain and are widely expressed in the dorsal 
hippocampus.[21] Both CB1 and MORs are present on 
the presynaptic membrane, in the different brain areas, 
and overlap in the reduction of the neurotransmitter 
release.[22] These receptors are involved in the primary 
rewarding effects of drugs.[23]

The interaction between orexinergic and cannabinoid 
systems in some areas of reward circuits, in response to 
some addictive substances such as nicotine, has already 
been demonstrated.[24,25] Therefore, due to the similarity of 
the action of tramadol and morphine, as well as the lack 
of sufficient evidence regarding the mechanism of action of 
tramadol, in this study, our aim was to evaluate the acute 
effects of tramadol on CA1 neuronal activity as well as to 
explain the possible role of OX2 and CB1 receptors in the 
effects of tramadol.

Materials and Methods
Animals

Experiments have been done on male Wistar rats, 
weighing 250–300 g (acquired from Isfahan University 
of Medical Sciences, Isfahan, Iran). Animals were 
maintained in an animal house, under controlled 
temperature and scheduled illumination conditions (12‑h 
light/12‑h dark cycle, lights on at 07:00 am) with water 
and food available ad libitum.

All experiments were approved by the Animal Ethics 
Committee of Isfahan University of Medical Sciences 
(IR.MUI.MED.REC.1398.588), and performed in strict 
accordance with the directive, regarding care and use of 
animals for experimental procedures and use of laboratory 
animals (National Institutes of Health, Publication 
No. 85–23), revised 2010. We tried to minimize the number 
and suffering of animals to achieve statistically significant 
results.

Drugs

Tramadol hydrochloride (Alborz Drug Company, Iran) was 
injected intraperitoneally (i.p., 25 mg/kg).[26] TCS‑OX2‑29 
(Tocris Bioscience, Bristol, UK), as an OX2R antagonist, 
and AM251 (Sigma‑Aldrich, USA), as a CB1R antagonist, 
were dissolved in dimethyl sulfoxide (DMSO; 10% v/v) 
and saline (0.9%), and a drop of Tween 80 was used as a 
vehicle.[27]

CA1 single‑unit recordings and data collection

Rats were deeply anesthetized by injection of 
urethane (1.6 g/kg, i.p) and placed in a stereotaxic 
instrument (Stoelting Co. USA). Animal body 
temperature was continuously monitored and maintained 
at 37°C, using an electrically heating pad (LSI, 
Spain). Surgery was performed, and a hole (roughly 
3 mm in diameter) was made to permit positioning 
of a two‑barrel micropipette (one barrel for drug 
microinjection, and the other for extracellular action 
potential recording), into the CA1 (AP = ‒3.2 mm; L = 
±2.2 mm; DV = ‒2.4 mm).[28]

Single‑unit activities of neurons of CA1 were recorded 
extracellularly with fine tip (1–3 µm) glass micropipettes, 
filled with 2 M sodium chloride solution. Micropipettes 
were gently pulled into the CA1 area, using a manual 
microdrive. Recorded signals were presented as a rate 
histogram. We recorded the extracellular electrical activity 
of one to four neurons from each animal. Recorded 
extracellular signals were filtered (300 Hz to 3 kHz 
bandpass), and digitized, using a commercial analog to 
the digital data acquisition system. Data analysis was 
performed by the related software tools, eLab (Science 
Beam Institute, Iran).

When steady firing rate was identified, the 
baseline was recorded for 15 min, and then, 
tramadol (25 mg/kg) was injected intraperitoneally, 
and 30 min later, TCS‑OX2 (1 nmol/0.3 µL), AM251 
(1 nmol/0.3 µL), or both of them were microinjected in 
the related groups,[24,29] and recording continued for other 
60 min. In the control groups, DMSO was microinjected 
into the CA1, as a vehicle. Examinations were done on 
12–18 neurons in 6–7 rats, in each experimental group.

Histological verification

After each experiment, rats were kept anesthetized and 
perfused transcardially with normal saline, followed by 10% 
buffered formalin. Then, brains were removed and sectioned 
coronally at 55 µm thickness, and recording and injection 
sites were histologically verified under a microscope, and 
compared to the rat brain Atlas [Figure 1].[28]

Data analysis

Data were analyzed, using the SPSS version 23 for windows. 
The spontaneous firing rate over 15 min was defined, as the 
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baseline firing rate (in spikes/second). An increase/decrease 
of firing rates beyond the mean ± two‑fold of the SD of the 
baseline firing rate was considered as an excitatory/inhibitory 
response, respectively.[16,24] The percent changes of the firing 
rate with respect to the baseline firing rate between the 
groups were analyzed, using the one‑way ANOVA, followed 
by a post hoc Tukey’s test and unpaired Student’s t‑test, 
and the Chi‑square test for comparing cells with excitatory 
or inhibitory responses, between different groups. Data are 
expressed as mean ± standard error of the mean (n = 6–7 rats). 
P < 0.05 was considered statistically significant.

Results
CA1 neuronal spontaneous discharge

The putative pyramidal neurons were isolated based on the 
firing rate and waveform characteristics; neurons with a 
firing rate <8 Hz and spike duration more than 1.3 ms were 
chosen, therefore, according to the previous studies,[30,31] 
we assumed that our target neurons were pyramidal 
neurons [Figure 1]. After ensuring the stability of neuronal 
activity and baseline recording (15‑min), tramadol was 
injected interperitoneally and 30 min later, DMSO or 
antagonists were microinjected into the CA1.

A Chi‑square test, for comparing the difference in the 
proportion of neurons with excitatory/inhibitory or 
no‑responses, revealed significant differences between the 
proportion of neurons in the tramadol group, compared 
to the saline group [P < 0.01; Figure 2a]. Furthermore, 
intraperitoneal injection of tramadol (25 mg/kg) had 

inhibitory effects on the majority of CA1 neurons, with 
respect to the baseline activity [P < 0.01; Figure 2b].

Neuronal response to the blockade of OX2R and CB1R 
following the tramadol administration

After microinjection of DMSO as a vehicle within CA1, 
following i.p. injection of saline or tramadol, neuronal 
firing showed an insignificant decrease in the saline 
group and an increase in the tramadol group. However, 
the percentage of changes varied between the groups, 
significantly [P < 0.05; Figure 3].

Furthermore, neuronal responses after intraperitoneal 
injection of saline or tramadol and then microinjection 
of antagonists in CA1 were similar to the baseline in the 
same group, and the cumulative effect of the two injections 
prevented a significant change in primary neuronal activity. 
However, in the comparison between the groups, different 
percentage changes were observed.

The OX2R blockade increased the firing rate, compared to 
the saline‑DMSO group [P < 0.05; Figure 3] but prevented 
the increase of firing rate in the tramadol group, and it had 
no significant difference with respect to the saline‑DMSO 
group [Figure 3]. The CB1R blockade in CA1 alone had 
no effect, and there were no significant differences between 
the saline‑DMSO and the saline‑AM251 groups. However, 
microinjection of AM251 prevented the increase of firing 
rate in the tramadol group significantly, with respect to the 
tramadol‑DMSO group [P < 0.05; Figure 3].

Concurrent blockade of OX2R and CB1R in the CA1 
prevented the increase of firing rate following OX2R 
blockade alone, and there was no significant difference 
with respect to the saline‑DMSO group [Figure 3]; also, 
concurrent blockade of receptors decreased the neuronal 
firing rate significantly, with respect to the tramadol‑DMSO 
group [P < 0.05; Figure 3].

A comparison of the difference in the proportion of 
neurons, excitatory/inhibitory, or no responses revealed 
significant differences between the proportion of neurons 
in the saline‑TCS‑OX2‑29 (P < 0.05) and saline‑AM251 
groups (P < 0.05), with respect to the saline‑DMSO 
group but no significant differences between the other 
experimental groups [Table 1].

Discussion
The results of the present study showed that systemic 
injection of tramadol can acutely reduce neuronal activity 
in the CA1 region of the hippocampus. According to the 
characteristics of the selected neurons,[31] this decrease in 
firing rate was related to the pyramidal neurons in this area.

The hippocampus, as a part of the limbic system, plays 
a significant role in learning and memory, and its role 
in drug addiction has been demonstrated.[32] The CA1 
region that is under the influence of opioids contains 

Figure 1: (a) The coronal photomicrograph of the recording and 
microinjection site in the CA1. (b) A representative image, displaying the 
microinjection and recording sites in the CA1. (c) A representative pattern 
of neuronal electrical activity recorded from the CA1. (d) An expanded 
waveform of a spike recorded from a CA1 neuron
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several neurotransmitters, including glutamate, GABA, 
acetylcholine, dopamine, and monoamines.[33,34]

Glutamate receptors are abundantly expressed in the 
hippocampus and play a key role in synaptic plasticity 
and memory formation. Evidence shows that glutamate 
in pyramidal cells induces transmission of GABA and 
facilitates storage of DA, 5HT, and Ach in vesicles.[35] In 
the CA1 area, there is an interaction between the opioid 
and glutamatergic systems. Opioids can inhibit glutamate 
release in the CA1 and cause memory damage.[36] Tramadol 
probably through affecting opioid receptors can reduce 
glutamate transmission in CA1 and may have inhibitory 
effects on glutamate receptors.[36] Therefore, tramadol may 
reduce neural activity by affecting glutamate transmission.

Tramadol has also been shown to affect cholinergic 
neurotransmission, which is important for normal hippocampal 
function and learning and memory processes.[6] It has been 
demonstrated that tramadol can increase the expression of 
acetylcholinesterase in the CA1 and reduce the release of 
acetylcholine by the presynaptic terminal.[37]

Tramadol prevents the reabsorption of serotonin, 
noradrenaline, and increases the concentration of these 

neurotransmitters in the extracellular area.[38] It has been 
shown that stimulation of serotonin receptors (HT1A‑5) 
inhibits the activity of CA1 pyramidal cells and may 
indirectly affect the release and activity of glutamate and 
acetylcholine.[39,40] Serotonin receptor stimulation has been 
shown to inhibit glutamate release in CA1 and prevent the 
release of acetylcholine in the forebrain.[39,41] Furthermore, 
studies have reported that stimulation of adrenergic 
receptors by tramadol can increase potassium conduction, 
hyperpolarization, and inhibition of spontaneous firing 
in locus coeruleus.[42] Furthermore, tramadol through the 
induction of oxidative stress[43] as well as disrupting Na/K 
ATPase activity can cause cell damage and cell death.[37]

In another part of this study, the mediating effects of the 
two endocannabinoid and orexin systems were evaluated 
by blocking CB1 and OX2 receptors in CA1 in response 
to tramadol. Blocking any of these receptors alone could 
prevent the acute effects of tramadol on neuronal activity.

The orexinergic system is essential for the effects of 
drugs such as morphine and cocaine, and studies have 
shown that injection of OX2R antagonist into the CA1 
can reduce morphine absorption and reward.[44] It has 
been demonstrated that blockade of orexin receptors in 
VTA, significantly reduced the effects of morphine and 
cocaine.[45,46] Therefore, it is possible that by a similar 
mechanism, the OX2R blockade prevented the absorption 
and effects of tramadol in CA1.

The OX2R blockade in the saline group increased the 
firing rate. This is in line with studies that have shown that 
orexin has a stimulant effect in most areas of the brain.[17] 
However, orexin can also inhibit some neurons through 
presynaptic mechanisms, for example, OX2R may increase 
potassium current by activating Gi/Go.[17]

In the present study, the CB1R blockade in CA1 in the 
saline group had no effect on neuronal activity. However, 
microinjection of AM251 in CA1 prevented the increase 
of firing rate in the tramadol group. It has been revealed 
that CB1R can mediate the effects of tramadol in the 

Figure 3: The effects of OX2R and CB1R antagonists, on the percentage 
difference of firing rate of neurons within the CA1, following the tramadol 
systemic administration. Data are expressed as mean ± standard error 
of the mean (n = 12–18 neurons in 6–8 rats in each experimental group). 
*P < 0.05 is different from the saline‑DMSO group. +P < 0.01 is different 
from the tramadol‑DMSO group

Figure 2: The effect of tramadol systemic administration, on (a) the proportion of neurons with excitatory/inhibitory or no‑responses, and (b) the percentage 
difference of firing rate of neurons, within the CA1. Data are expressed as mean ± standard error of the mean (n = 116 neurons). **P < 0.01 is different 
from the saline group
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NAc.[47] Both CB1 and µ receptors are present on the 
presynaptic membrane and by inhibition of adenylate 
cyclase, a decrease of Ca2+ conduction and an increase 
of K conduction reduce the release of neurotransmitters, 
such as acetylcholine, serotonin, and noradrenaline.[22,48] 
Furthermore, stimulation of CB1 can reduce the release of 
GABA on pyramidal neurons in the hippocampus.[48] Thus, 
blockade of this receptor in the basal state may have no 
effect on neuronal activity, but when an effective drug such 
as tramadol has affected this area, it can prevent the effects 
of tramadol by inhibiting GABA release.

We observed that the concurrent blockade of OX2R 
and CB1R in the CA1 of the saline group prevented the 
increase of firing rate, following the OX2R blockade alone. 
Furthermore, concurrent blockade of the receptors prevented 
the increased neuronal firing rate in tramadol‑treated rats 
but no more than blockade of each receptor alone.

OX2R and CB1R are widely expressed in different brain 
areas,[49] and recent studies have shown the interaction 
of OX2R and CB1R in the effects of drugs, such as 
nicotine.[16] Various studies have shown the interaction 
of Type 1 receptors of the two neuropeptides, and there 
is ample evidence about the interaction of these two 
neuropeptide systems. In the postsynaptic region, retrograde 
activation of OX1R inhibits the release of GABA by 
cannabinoids at the presynaptic terminal.[50] AM251 has 
been shown to reverse the effects of orexin in the PAG 
region and reduce the analgesic effects of orexin,[50] so it 
can be inferred that CB1 modulates the effects of orexin.

Conclusions
Therefore, it can be concluded that tramadol acutely reduces 
the neuronal activity in the hippocampus by affecting 
neuronal circuits in the CA1. These effects are probably 
mediated by two neuropeptide systems, endocannabinoids, 
and orexin, and by blocking their receptors, the effects of 
tramadol on this area can be largely prevented.
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