Original Article: The acute effects of different doses of tramadol on neuronal activity of medial prefrontal cortex in rats

Authors

Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: Tramadol is an opioid analgesic with monoamine reuptake inhibitory effects. Although tramadol has been widely used to control pain, there is controversy about the risk of abuse. Therefore, in the present study, the acute effects of tramadol on neuronal activity in the medial prefrontal cortex (mPFC), which is one of the important centers of the reward system, were investigated electrophysiologically. Materials and Methods: Tramadol was injected interperitoneally (12.5 and 25 mk/kg) or subcutaneously (40 mg/kg) and its effect on the firing of mPFC neurons was investigated, using in vivo extracellular single unit recording. Results: Tramadol could not significantly affect neural activity in mPFC, suggesting no acute and rapid effect on mPFC. Conclusions: The present results showed that neural activity in mPFC was not rapidly affected by acute application of tramadol. Since the role of mPFC in tramadol addiction has been elucidated, it can be concluded that these effects may be due to delayed responses or chronic use of tramadol.

Keywords

1.
Subedi M, Bajaj S, Kumar MS, Mayur YC. An overview of tramadol and its usage in pain management and future perspective. Biomed Pharmacother 2019;111:443-51.  Back to cited text no. 1
    
2.
Khodayari S, Pakdel FG, Shahabi P, Naderi S. Acute tramadol-induced cellular tolerance and dependence of ventral tegmental area dopaminergic neurons: An in vivo electrophysiological study. Basic Clin Neurosci 2019;10:209-24.  Back to cited text no. 2
    
3.
Mohamed HM, Mahmoud AM. Chronic exposure to the opioid tramadol induces oxidative damage, inflammation and apoptosis, and alters cerebral monoamine neurotransmitters in rats. Biomed Pharmacother 2019;110:239-47.  Back to cited text no. 3
    
4.
Miotto K, Cho AK, Khalil MA, Blanco K, Sasaki JD, Rawson R. Trends in tramadol: Pharmacology, metabolism, and misuse. Anesth Analg 2017;124:44-51.  Back to cited text no. 4
    
5.
Chen S, Argáez C. Tramadol for the management of pain in adult patients: A review of clinical effectiveness-An Update. Canadian Agency for Drugs and Technologies in Health, Ottawa (ON); 2018.  Back to cited text no. 5
    
6.
Preston KL, Jasinski DR, Testa M. Abuse potential and pharmacological comparison of tramadol and morphine. Drug Alcohol Depend 1991;27:7-17.  Back to cited text no. 6
    
7.
Munro G, Erichsen HK, Nielsen AN, Nielsen EØ, Scheel-Kruger J, Weikop P, et al. The novel compound (±)-1-[10-((E)-3-Phenyl-allyl)-3, 10-diaza-bicyclo [4.3. 1] dec-3-yl]-propan-1-one (NS7051) attenuates nociceptive transmission in animal models of experimental pain; a pharmacological comparison with the combined μ-opioid receptor agonist and monoamine reuptake inhibitor tramadol. Neuropharmacology 2008;54:331-43.  Back to cited text no. 7
    
8.
Kimura M, Obata H, Saito S. Antihypersensitivity effects of tramadol hydrochloride in a rat model of postoperative pain. Anesth Analg 2012;115:443-9.  Back to cited text no. 8
    
9.
Tzschentke TM. The medial prefrontal cortex as a part of the brain reward system. Amino Acids 2000;19:211-9.  Back to cited text no. 9
    
10.
Adekomi DA, Adegoke AA, Olaniyan OO, Ogunrinde AE, Ijomone OK. Effects of alcohol and tramadol co-treatment on cognitive functions and neuro-inflammatory responses in the medial prefrontal cortex of juvenile male rats. Anat Int J Exp Clin Anat 2019;13:1-12.  Back to cited text no. 10
    
11.
Asari Y, Ikeda Y, Tateno A, Okubo Y, Iijima T, Suzuki H. Acute tramadol enhances brain activity associated with reward anticipation in the nucleus accumbens. Psychopharmacology (Berl) 2018;235:2631-42.  Back to cited text no. 11
    
12.
Tzschentke TM, Schmidt WJ. Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol 2000;14:131-42.  Back to cited text no. 12
    
13.
Cannon CZ, Kissling GE, Hoenerhoff MJ, King-Herbert AP, Blankenship-Paris T. Evaluation of dosages and routes of administration of tramadol analgesia in rats using hot-plate and tail-flick tests. Lab Anim (NY) 2010;39:342-51.  Back to cited text no. 13
    
14.
Azizi F, Fartootzadeh R, Alaei H, Reisi P. Electrophysiological study of the response of ventral tegmental area non-dopaminergic neurons to nicotine after concurrent blockade of orexin receptor-2 and cannabinoid receptors-1. Brain Res 2019;1719:176-82.  Back to cited text no. 14
    
15.
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Fifth ed. San Diego: Academic Press; 2005.  Back to cited text no. 15
    
16.
Ji G, Sun H, Fu Y, Li Z, Pais-Vieira M, Galhardo V, et al. Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci 2010;30:5451-64.  Back to cited text no. 16
    
17.
Ji G, Neugebauer V. Pain-related deactivation of medial prefrontal cortical neurons involves mGluR1 and GABAA receptors. J Neurophysiol 2011;106:2642-52.  Back to cited text no. 17
    
18.
Fartootzadeh R, Azizi F, Alaei H, Reisi P. Orexin type-2 receptor blockade prevents the nicotine-induced excitation of nucleus accumbens core neurons in rats: An electrophysiological perspective. Pharmacol Rep 2019;71:361-6.  Back to cited text no. 18
    
19.
Tzschentke TM, Schmidt WJ. Discrete quinolinic acid lesions of the rat prelimbic medial prefrontal cortex affect cocaine-and MK-801-, but not morphine-and amphetamine-induced reward and psychomotor activation as measured with the place preference conditioning paradigm. Behav Brain Res 1998;97:115-27.  Back to cited text no. 19
    
20.
Ji G, Neugebauer V. Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain 2012;5:36.  Back to cited text no. 20
    
21.
West EA, Saddoris MP, Kerfoot EC, Carelli RM. Prelimbic and infralimbic cortical regions differentially encode cocaine-associated stimuli and cocaine-seeking before and following abstinence. Eur J Neurosci 2014;39:1891-902.  Back to cited text no. 21
    
22.
Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 2004;5:793-807.  Back to cited text no. 22
    
23.
DeFelipe J. Neocortical neuronal diversity: Chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 1993;3:273-89.  Back to cited text no. 23
    
24.
Upadhyay DK, Palaian S, Kishore PV, Paudel R, Prabhu M, Shankar PR, et al. Tramadol. J Inst Med Nepal 2006;28:57-61.  Back to cited text no. 24
    
25.
Sadat-Shirazi MS, Babhadi-Ashar N, Khalifeh S, Mahboubi S, Ahmadian-Moghaddam H, Zarrindast MR. Tramadol induces changes in Δ-FosB, μ-opioid receptor, and p-CREB level in the nucleus accumbens and prefrontal cortex of male Wistar rat. Am J Drug Alcohol Abuse 2019;45:84-9.  Back to cited text no. 25
    
26.
Sadat-Shirazi MS, Babhadi-Ashar N, Ahmadian-Moghaddam H, Khalifeh S, Zarrindast MR. Acute and chronic tramadol treatment impresses tyrosine kinase B (Trk-B) receptor in the amygdala and nucleus accumbens. Iran Med Counc 2018;1:11-6.