1. |
Subedi M, Bajaj S, Kumar MS, Mayur YC. An overview of tramadol and its usage in pain management and future perspective. Biomed Pharmacother 2019;111:443-51.
|
2. |
Khodayari S, Pakdel FG, Shahabi P, Naderi S. Acute tramadol-induced cellular tolerance and dependence of ventral tegmental area dopaminergic neurons: An in vivo electrophysiological study. Basic Clin Neurosci 2019;10:209-24.
|
3. |
Mohamed HM, Mahmoud AM. Chronic exposure to the opioid tramadol induces oxidative damage, inflammation and apoptosis, and alters cerebral monoamine neurotransmitters in rats. Biomed Pharmacother 2019;110:239-47.
|
4. |
Miotto K, Cho AK, Khalil MA, Blanco K, Sasaki JD, Rawson R. Trends in tramadol: Pharmacology, metabolism, and misuse. Anesth Analg 2017;124:44-51.
|
5. |
Chen S, Argáez C. Tramadol for the management of pain in adult patients: A review of clinical effectiveness-An Update. Canadian Agency for Drugs and Technologies in Health, Ottawa (ON); 2018.
|
6. |
Preston KL, Jasinski DR, Testa M. Abuse potential and pharmacological comparison of tramadol and morphine. Drug Alcohol Depend 1991;27:7-17.
|
7. |
Munro G, Erichsen HK, Nielsen AN, Nielsen EØ, Scheel-Kruger J, Weikop P, et al. The novel compound (±)-1-[10-((E)-3-Phenyl-allyl)-3, 10-diaza-bicyclo [4.3. 1] dec-3-yl]-propan-1-one (NS7051) attenuates nociceptive transmission in animal models of experimental pain; a pharmacological comparison with the combined μ-opioid receptor agonist and monoamine reuptake inhibitor tramadol. Neuropharmacology 2008;54:331-43.
|
8. |
Kimura M, Obata H, Saito S. Antihypersensitivity effects of tramadol hydrochloride in a rat model of postoperative pain. Anesth Analg 2012;115:443-9.
|
9. |
Tzschentke TM. The medial prefrontal cortex as a part of the brain reward system. Amino Acids 2000;19:211-9.
|
10. |
Adekomi DA, Adegoke AA, Olaniyan OO, Ogunrinde AE, Ijomone OK. Effects of alcohol and tramadol co-treatment on cognitive functions and neuro-inflammatory responses in the medial prefrontal cortex of juvenile male rats. Anat Int J Exp Clin Anat 2019;13:1-12.
|
11. |
Asari Y, Ikeda Y, Tateno A, Okubo Y, Iijima T, Suzuki H. Acute tramadol enhances brain activity associated with reward anticipation in the nucleus accumbens. Psychopharmacology (Berl) 2018;235:2631-42.
|
12. |
Tzschentke TM, Schmidt WJ. Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol 2000;14:131-42.
|
13. |
Cannon CZ, Kissling GE, Hoenerhoff MJ, King-Herbert AP, Blankenship-Paris T. Evaluation of dosages and routes of administration of tramadol analgesia in rats using hot-plate and tail-flick tests. Lab Anim (NY) 2010;39:342-51.
|
14. |
Azizi F, Fartootzadeh R, Alaei H, Reisi P. Electrophysiological study of the response of ventral tegmental area non-dopaminergic neurons to nicotine after concurrent blockade of orexin receptor-2 and cannabinoid receptors-1. Brain Res 2019;1719:176-82.
|
15. |
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Fifth ed. San Diego: Academic Press; 2005.
|
16. |
Ji G, Sun H, Fu Y, Li Z, Pais-Vieira M, Galhardo V, et al. Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci 2010;30:5451-64.
|
17. |
Ji G, Neugebauer V. Pain-related deactivation of medial prefrontal cortical neurons involves mGluR1 and GABAA receptors. J Neurophysiol 2011;106:2642-52.
|
18. |
Fartootzadeh R, Azizi F, Alaei H, Reisi P. Orexin type-2 receptor blockade prevents the nicotine-induced excitation of nucleus accumbens core neurons in rats: An electrophysiological perspective. Pharmacol Rep 2019;71:361-6.
|
19. |
Tzschentke TM, Schmidt WJ. Discrete quinolinic acid lesions of the rat prelimbic medial prefrontal cortex affect cocaine-and MK-801-, but not morphine-and amphetamine-induced reward and psychomotor activation as measured with the place preference conditioning paradigm. Behav Brain Res 1998;97:115-27.
|
20. |
Ji G, Neugebauer V. Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain 2012;5:36.
|
21. |
West EA, Saddoris MP, Kerfoot EC, Carelli RM. Prelimbic and infralimbic cortical regions differentially encode cocaine-associated stimuli and cocaine-seeking before and following abstinence. Eur J Neurosci 2014;39:1891-902.
|
22. |
Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 2004;5:793-807.
|
23. |
DeFelipe J. Neocortical neuronal diversity: Chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 1993;3:273-89.
|
24. |
Upadhyay DK, Palaian S, Kishore PV, Paudel R, Prabhu M, Shankar PR, et al. Tramadol. J Inst Med Nepal 2006;28:57-61.
|
25. |
Sadat-Shirazi MS, Babhadi-Ashar N, Khalifeh S, Mahboubi S, Ahmadian-Moghaddam H, Zarrindast MR. Tramadol induces changes in Δ-FosB, μ-opioid receptor, and p-CREB level in the nucleus accumbens and prefrontal cortex of male Wistar rat. Am J Drug Alcohol Abuse 2019;45:84-9.
|
26. |
Sadat-Shirazi MS, Babhadi-Ashar N, Ahmadian-Moghaddam H, Khalifeh S, Zarrindast MR. Acute and chronic tramadol treatment impresses tyrosine kinase B (Trk-B) receptor in the amygdala and nucleus accumbens. Iran Med Counc 2018;1:11-6.
|