Role of the innate immunity in female reproductive tract

Authors

1 Applied Physiology Research Center and Department of Physiology, Isfahan University of Medical Sciences, Isfahan; Department of Anatomy, Tehran University of Medical Science, Tehran, Iran

2 Department of Anatomy, Tehran University of Medical Science, Tehran, Iran

3 Department of Anatomy, Cellular and Molecular Research Center, Iran University of Medical Science, Iran

4 Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran

Abstract

The mucosal immune system in the female reproductive tract (FRT) is well equipped to meet the sexually transmitted pathogens, allogeneic sperm, and the immunologically distinct fetus. Analysis of the FRT indicates that epithelial cells provide a physical barrier against pathogens and microbial infections as well as secretions containing anti-microbial peptides, cytokines, and chemokines which recruit and activate immune cells. Epithelial and immune cells confer protection in part through Toll-like receptors. The aim of this literature is to review the diverse components of the innate immune system, contributing to an exclusive protection system throughout the FRT.

Keywords

1. Horne AW, Stock SJ, King AE. Innate immunity and disorders of the female reproductive tract. Reproduction 2008;135:739-49.   Back to cited text no. 1
    
2. Aflatoonian R, Tuckerman E, Elliott SL, Bruce C, Aflatoonian A, Li TC, et al. Menstrual cycle-dependent changes of Toll-like receptors in endometrium. Hum Reprod 2007;22:586-93.   Back to cited text no. 2
    
3. Wira CR, Patel MV, Ghosh M, Mukura L, Fahey JV. Innate immunity in the human female reproductive tract: Endocrine regulation of endogenous antimicrobial protection against HIV and other sexually transmitted infections. Am J Reprod Immunol 2011;65:196-211.   Back to cited text no. 3
    
4. Morré SA, Rozendaal L, van Valkengoed IG, Boeke AJ, van Voorst Vader PC, Schirm J, et al. Urogenital Chlamydia trachomatis serovars in men and women with a symptomatic or asymptomatic infection: An association with clinical manifestations? J Clin Microbiol 2000;38:2292-6.   Back to cited text no. 4
    
5. Mackay I, Rosen FS. Advances in immunology. N Engl J Med 2000;343:338-44.  Back to cited text no. 5
    
6. Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L. Innate and adaptive immunity in female genital tract: Cellular responses and interactions. Immunol Rev 2005;206:306-35.   Back to cited text no. 6
[PUBMED]    
7. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197-216.   Back to cited text no. 7
[PUBMED]    
8. Nasu K, Narahara H. Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm 2010;2010:976024.   Back to cited text no. 8
[PUBMED]    
9. Wiesner J, Vilcinskas A. Antimicrobial peptides: The ancient arm of the human immune system. Virulence 2010;1:440-64.   Back to cited text no. 9
[PUBMED]    
10. Fazeli A, Bruce C, Anumba DO. Characterization of Toll-like receptors in the female reproductive tract in humans. Hum Reprod 2005;20:1372-8.   Back to cited text no. 10
[PUBMED]    
11. Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses 2011;3:920-40.   Back to cited text no. 11
[PUBMED]    
12. Ochiel DO, Fahey JV, Ghosh M, Haddad SN, Wira CR. Innate Immunity in the female reproductive tract: Role of sex hormones in regulating uterine epithelial cell protection against pathogens. Curr Womens Health Rev 2008;4:102-17.  Back to cited text no. 12
[PUBMED]    
13. Hickey DK, Patel MV, Fahey JV, Wira CR. Innate and adaptive immunity at mucosal surfaces of the female reproductive tract: Stratification and integration of immune protection against the transmission of sexually transmitted infections. J Reprod Immunol 2011;88:185-94.   Back to cited text no. 13
[PUBMED]    
14. Capaldo CT, Nusrat A. Cytokine regulation of tight junctions. Biochim Biophys Acta 2009;1788:864-71.   Back to cited text no. 14
[PUBMED]    
15. Fahey JV, Wright JA, Shen L, Smith JM, Ghosh M, Rossoll RM, et al. Estradiol selectively regulates innate immune function by polarized human uterine epithelial cells in culture. Mucosal Immunol 2008;1:317-25.   Back to cited text no. 15
[PUBMED]    
16. Hladik F, Sakchalathorn P, Ballweber L, Lentz G, Fialkow M, Eschenbach D, et al. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity 2007;26:257-70.   Back to cited text no. 16
    
17. Farage MA, Miller KW, Gerberick GF, Saito FH, Ledger WJ, Witkin SS. Innate immunity in the lower female mucosal tract. J Steroids Hormon Sci 2011;2:106.  Back to cited text no. 17
    
18. Carson DD, DeSouza MM, Kardon R, Zhou X, Lagow E, Julian J. Mucin expression and function in the female reproductive tract. Hum Reprod Update 1998;4:459-64.   Back to cited text no. 18
    
19. Domino SE, Hurd EA, Thomsson KA, Karnak DM, Holmen Larsson JM, Thomsson E, et al. Cervical mucins carry α(1,2)fucosylated glycans that partly protect from experimental vaginal candidiasis. Glycoconj J 2009;26:1125-34.   Back to cited text no. 19
    
20. Muchekehu RW, Quinton PM. A new role for bicarbonate secretion in cervico-uterine mucus release. J Physiol 2010;588:2329-42.   Back to cited text no. 20
    
21. Vigil P, Cortés ME, Zúñiga A, Riquelme J, Ceric F. Scanning electron and light microscopy study of the cervical mucus in women with polycystic ovary syndrome. J Electron Microsc (Tokyo) 2009;58:21-7.   Back to cited text no. 21
    
22. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol 2011;30:16-34.   Back to cited text no. 22
[PUBMED]    
23. Aflatoonian R, Fazeli A. Toll-like receptors in female reproductive tract and their menstrual cycle dependent expression. J Reprod Immunol 2008;77:7-13.   Back to cited text no. 23
[PUBMED]    
24. Kanneganti TD, Lamkanfi M, Núñez G. Intracellular NOD-like receptors in host defense and disease. Immunity 2007;27:549-59.   Back to cited text no. 24
    
25. Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol 2006;117:979-87; quiz 88.   Back to cited text no. 25
[PUBMED]    
26. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394-7.   Back to cited text no. 26
[PUBMED]    
27. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol 2010;11:373-84.   Back to cited text no. 27
[PUBMED]    
28. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004;303:1526-9.   Back to cited text no. 28
[PUBMED]    
29. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124:783-801.   Back to cited text no. 29
[PUBMED]    
30. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol 2010;11:373-84.   Back to cited text no. 30
[PUBMED]    
31. Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science 2002;296:298-300.   Back to cited text no. 31
[PUBMED]    
32. Wetzler LM. The role of Toll-like receptor 2 in microbial disease and immunity. Vaccine 2003;21(Suppl 2):S55-60.   Back to cited text no. 32
[PUBMED]    
33. Naumann M, Wessler S, Bartsch C, Wieland B, Meyer TF. Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors nuclear factor κB and activator protein 1 and the induction of inflammatory cytokines. J Exp Med 1997;186:247-58.   Back to cited text no. 33
[PUBMED]    
34. Netea MG, Van der Graaf C, Van der Meer JW, Kullberg BJ. Recognition of fungal pathogens by Toll-like receptors. Eur J Clin Microbiol Infect Dis 2004;23:672-6.   Back to cited text no. 34
[PUBMED]    
35. Ohashi K, Burkart V, Flohé S, Kolb H. Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 2000;164:558-61.   Back to cited text no. 35
    
36. Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol 2006;7:131-7.   Back to cited text no. 36
[PUBMED]    
37. Pasare C, Medzhitov R. Toll-like receptors: Linking innate and adaptive immunity. Microbes Infect 2004;6:1382-7.   Back to cited text no. 37
    
38. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004;303:1522-6.   Back to cited text no. 38
    
39. Chuang T, Ulevitch RJ. Identification of hTLR10: A novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 2001;1518:157-61.   Back to cited text no. 39
    
40. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740-5.   Back to cited text no. 40
[PUBMED]    
41. Caballero I, Al Ghareeb S, Basatvat S, Sanchez-Lopez JA, Montazeri M, Maslehat N, et al. Human trophoblast cells modulate endometrial cells nuclear factor κB response to flagellin in vitro. PLoS One 2013;8:e39441.   Back to cited text no. 41
    
42. Fujita Y, Mihara T, Okazaki T, Shitanaka M, Kushino R, Ikeda C, et al. Toll-like receptors (TLR) 2 and 4 on human sperm recognize bacterial endotoxins and mediate apoptosis. Hum Reprod 2011;26:2799-806.   Back to cited text no. 42
[PUBMED]    
43. Pioli PA, Amiel E, Schaefer TM, Connolly JE, Wira CR, Guyre PM. Differential expression of Toll-like receptors 2 and 4 in tissues of the human female reproductive tract. Infect Immun 2004;72:5799-806.   Back to cited text no. 43
[PUBMED]    
44. Darville T, O'Neill JM, Andrews CW Jr, Nagarajan UM, Stahl L, Ojcius DM. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J Immunol 2003;171:6187-97.   Back to cited text no. 44
[PUBMED]    
45. Schaefer TM, Desouza K, Fahey JV, Beagley KW, Wira CR. Toll-like receptor (TLR) expression and TLR-mediated cytokine/chemokine production by human uterine epithelial cells. Immunology 2004;112:428-36.   Back to cited text no. 45
[PUBMED]    
46. Ghosh M, Schaefer TM, Fahey JV, Wright JA, Wira CR. Antiviral responses of human Fallopian tube epithelial cells to toll-like receptor 3 agonist poly(I:C). Fertil Steril 2008;89(5 Suppl):1497-506.  Back to cited text no. 46
    
47. Fichorova RN, Cronin AO, Lien E, Anderson DJ, Ingalls RR. Response to Neisseria gonorrhoeae by cervicovaginal epithelial cells occurs in the absence of toll-like receptor 4-mediated signaling. J Immunol 2002;168:2424-32.   Back to cited text no. 47
[PUBMED]    
48. Andersen JM, Al-Khairy D, Ingalls RR. Innate immunity at the mucosal surface: Role of toll-like receptor 3 and toll-like receptor 9 in cervical epithelial cell responses to microbial pathogens. Biol Reprod 2006;74:824-31.   Back to cited text no. 48
[PUBMED]    
49. Hart KM, Murphy AJ, Barrett KT, Wira CR, Guyre PM, Pioli PA. Functional expression of pattern recognition receptors in tissues of the human female reproductive tract. J Reprod Immunol 2009;80:33-40.   Back to cited text no. 49
[PUBMED]    
50. Sentman CL, Wira CR, Eriksson M. NK cell function in the human female reproductive tract. Am J Reprod Immunol 2007;57:108-15.  Back to cited text no. 50
[PUBMED]    
51. Gregg CR, Melly MA, Hellerqvist CG, Coniglio JG, McGee ZA. Toxic activity of purified lipopolysaccharide of Neisseria gonorrhoeae for human fallopian tube mucosa. J Infect Dis 1981;143:432-9.   Back to cited text no. 51
[PUBMED]    
52. Pivarcsi A, Nagy I, Koreck A, Kis K, Kenderessy-Szabo A, Szell M, et al. Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human β-defensin-2 in vaginal epithelial cells. Microbes Infect 2005;7:1117-27.   Back to cited text no. 52
[PUBMED]    
53. Hirata T, Osuga Y, Hamasaki K, Hirota Y, Nose E, Morimoto C, et al. Expression of toll-like receptors 2, 3, 4, and 9 genes in the human endometrium during the menstrual cycle. J Reprod Immunol 2007;74:53-60.   Back to cited text no. 53
[PUBMED]    
54. Abrahams VM, Bole-Aldo P, Kim YM, Straszewski-Chavez SL, Chaiworapongsa T, Romero R, et al. Divergent trophoblast responses to bacterial products mediated by TLRs. J Immunol 2004;173:4286-96.   Back to cited text no. 54
    
55. Herbst-Kralovetz MM, Quayle AJ, Ficarra M, Greene S, Rose WA 2nd, Chesson R, et al. Quantification and comparison of toll-like receptor expression and responsiveness in primary and immortalized human female lower genital tract epithelia. Am J Reprod Immunol 2008;59:212-24.  Back to cited text no. 55
[PUBMED]    
56. Itoh H, Nasu K, Nishida M, Matsumoto H, Yuge A, Narahara H. Human oviductal stromal fibroblasts, but not oviductal epithelial cells, express Toll-like receptor 4: The site-specific mucosal immunity of the human fallopian tube against bacterial infection. Am J Reprod Immunol 2006;56:91-101.   Back to cited text no. 56
[PUBMED]    
57. Akashi-Takamura S, Miyake K. TLR accessory molecules. Curr Opin Immunol 2008;20:420-5.  Back to cited text no. 57
[PUBMED]    
58. Hirata T, Osuga Y, Hirota Y, Koga K, Yoshino O, Harada M, et al. Evidence for the presence of toll-like receptor 4 system in the human endometrium. J Clin Endocrinol Metab 2005;90:548-56.   Back to cited text no. 58
[PUBMED]    
59. Packiam M, Wu H, Veit SJ, Mavrogiorgos N, Jerse AE, Ingalls RR. Protective role of Toll-like receptor 4 in experimental gonococcal infection of female mice. Mucosal Immunol 2012;5:19-29.   Back to cited text no. 59
[PUBMED]    
60. Schaefer TM, Fahey JV, Wright JA, Wira CR. Innate immunity in the human female reproductive tract: Antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). J Immunol 2005;174:992-1002.   Back to cited text no. 60
[PUBMED]    
61. Lesmeister MJ, Jorgenson RL, Young SL, Misfeldt ML. 17β-estradiol suppresses TLR3-induced cytokine and chemokine production in endometrial epithelial cells. Reprod Biol Endocrinol 2005;3:74.   Back to cited text no. 61
[PUBMED]    
62. Aboussahoud W, Aflatoonian R, Bruce C, Elliott S, Ward J, Newton S, et al. Expression and function of Toll-like receptors in human endometrial epithelial cell lines. J Reprod Immunol 2009;84:41-51.   Back to cited text no. 62
[PUBMED]    
63. Bowdish DM, Davidson DJ, Hancock RE. Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 2006;306:27-66.   Back to cited text no. 63
[PUBMED]    
64. Agerberth B, Gudmundsson GH. Host antimicrobial defence peptides in human disease. Curr Top Microbiol Immunol 2006;306:67-90.   Back to cited text no. 64
[PUBMED]    
65. Tjabringa GS, Vos JB, Olthuis D, Ninaber DK, Rabe KF, Schalkwijk J, et al. Host defense effector molecules in mucosal secretions. FEMS Immunol Med Microbiol 2005;45:151-8.   Back to cited text no. 65
[PUBMED]    
66. Hazlett L, Wu M. Defensins in innate immunity. Cell Tissue Res 2011;343:175-88.   Back to cited text no. 66
[PUBMED]    
67. Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E, Selsted ME, et al. α-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 2003;17:F23-32.   Back to cited text no. 67
[PUBMED]    
68. Doss M, White MR, Tecle T, Hartshorn KL. Human defensins and LL-37 in mucosal immunity. J Leukoc Biol 2009;87:79-92.   Back to cited text no. 68
[PUBMED]    
69. Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat Rev Immunol 2003;3:710-20.   Back to cited text no. 69
[PUBMED]    
70. Sun L, Finnegan CM, Kish-Catalone T, Blumenthal R, Garzino-Demo P, La Terra Maggiore GM, et al. Human β-defensins suppress human immunodeficiency virus infection: Potential role in mucosal protection. J Virol 2005;79:14318-29.   Back to cited text no. 70
[PUBMED]    
71. Weinberg A, Quiñones-Mateu ME, Lederman MM. Role of human β-defensins in HIV infection. Adv Dent Res 2006;19:42-8.   Back to cited text no. 71
    
72. Valore EV, Park CH, Igreti SL, Ganz T. Antimicrobial components of vaginal fluid. Am J Obstet Gynecol 2002;187:561-8.   Back to cited text no. 72
[PUBMED]    
73. King AE, Critchley HO, Sallenave JM, Kelly RW. Elafin in human endometrium: An antiprotease and antimicrobial molecule expressed during menstruation. J Clin Endocrinol Metab 2003;88:4426-31.  Back to cited text no. 73
[PUBMED]    
74. Keller MJ, Guzman E, Hazrati E, Kasowitz A, Cheshenko N, Wallenstein S, et al. PRO 2000 elicits a decline in genital tract immune mediators without compromising intrinsic antimicrobial activity. AIDS 2007;21:467-76.   Back to cited text no. 74
[PUBMED]    
75. Balu RB, Savitz DA, Ananth CV, Hartmann KE, Miller WC, Thorp JM, et al. Bacterial vaginosis and vaginal fluid defensins during pregnancy. Am J Obstet Gynecol 2002;187:1267-71.   Back to cited text no. 75
[PUBMED]    
76. Moreau T, Baranger K, Dadé S, Dallet-Choisy S, Guyot N, Zani ML. Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie 2008;90:284-95.   Back to cited text no. 76
    
77. Baranger K, Zani ML, Chandenier J, Dallet-Choisy S, Moreau T. The antibacterial and antifungal properties of trappin-2 (pre-elafin) do not depend on its protease inhibitory function. FEBS J 2008;275:2008-20.   Back to cited text no. 77
[PUBMED]    
78. Pillay K, Coutsoudis A, Agadzi-Naqvi AK, Kuhn L, Coovadia HM, Janoff EN. Secretory leukocyte protease inhibitor in vaginal fluids and perinatal human immunodeficiency virus type 1 transmission. J Infect Dis 2001;183:653-6.   Back to cited text no. 78
[PUBMED]    
79. Iqbal SM, Ball TB, Levinson P, Maranan L, Jaoko W, Wachihi C, et al. Elevated elafin/trappin-2 in the female genital tract is associated with protection against HIV acquisition. AIDS 2009;23:1669-77.   Back to cited text no. 79
[PUBMED]    
80. King AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JR. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 2007;28:161-9.   Back to cited text no. 80
[PUBMED]    
81. Cole AM. Innate host defense of human vaginal and cervical mucosae. Curr Top Microbiol Immunol 2006;306:199-230.   Back to cited text no. 81
[PUBMED]    
82. Hein M, Valore EV, Helmig RB, Uldbjerg N, Ganz T. Antimicrobial factors in the cervical mucus plug. Am J Obstet Gynecol 2002;187:137-44.   Back to cited text no. 82
[PUBMED]    
83. Swart PJ, Kuipers EM, Smit C, Van Der Strate BW, Harmsen MC, Meijer DK. Lactoferrin. Antiviral activity of lactoferrin. Adv Exp Med Biol 1998;443:205-13.   Back to cited text no. 83
[PUBMED]    
84. Ganz T. Antimicrobial polypeptides. J Leukoc Biol 2004;75:34-8.   Back to cited text no. 84
[PUBMED]    
85. Lee-Huang S, Maiorov V, Huang PL, Ng A, Lee HC, Chang YT, et al. Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with anti-HIV activity. Biochemistry 2005;44:4648-55.   Back to cited text no. 85
[PUBMED]    
86. Cole AM, Cole AL. Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am J Reprod Immunol 2008;59:27-34.   Back to cited text no. 86
[PUBMED]    
87. Salamonsen LA, Hannan NJ, Dimitriadis E. Cytokines and chemokines during human embryo implantation: Roles in implantation and early placentation. Semin Reprod Med 2007;25:437-44.   Back to cited text no. 87
[PUBMED]    
88. Duerst RJ, Morrison LA. Innate immunity to herpes simplex virus type 2. Viral Immunol 2003;16:475-90.   Back to cited text no. 88
[PUBMED]    
89. Kaushic C, Grant K, Crane M, Wira CR. Infection of polarized primary epithelial cells from rat uterus with Chlamydia trachomatis: Cell-cell interaction and cytokine secretion. Am J Reprod Immunol 2000;44:73-9.   Back to cited text no. 89
[PUBMED]    
90. Kaushic C, Zhou F, Murdin AD, Wira CR. Effects of estradiol and progesterone on susceptibility and early immune responses to Chlamydia trachomatis infection in the female reproductive tract. Infect Immun 2000;68:4207-16.   Back to cited text no. 90
[PUBMED]    
91. Kayisli UA, Mahutte NG, Arici A. Uterine chemokines in reproductive physiology and pathology. Am J Reprod Immunol 2002;47:213-21.   Back to cited text no. 91
[PUBMED]    
92. Fahey JV, Schaefer TM, Channon JY, Wira CR. Secretion of cytokines and chemokines by polarized human epithelial cells from the female reproductive tract. Hum Reprod 2005;20:1439-46.   Back to cited text no. 92
[PUBMED]    
93. Carolan EJ, Mower DA, Casale TB. Cytokine-induced neutrophil transepithelial migration is dependent upon epithelial orientation. Am J Respir Cell Mol Biol 1997;17:727-32.   Back to cited text no. 93
[PUBMED]    
94. Eriksson M, Meadows SK, Wira CR, Sentman CL. Endogenous transforming growth factor-β inhibits toll-like receptor mediated activation of human uterine natural killer cells. Am J Reprod Immunol 2006;56:321-8.   Back to cited text no. 94
[PUBMED]    
95. Ochiel DO, Ghosh M, Fahey JV, Guyre PM, Wira CR. Human uterine epithelial cell secretions regulate dendritic cell differentiation and responses to TLR ligands. J Leukoc Biol 2010;88:435-44.   Back to cited text no. 95
[PUBMED]    
96. Le Bon A, Tough DF. Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 2002;14:432-6.   Back to cited text no. 96
[PUBMED]    
97. Trinchieri G. Type I interferon: Friend or foe? J Exp Med 2010;207:2053-63.   Back to cited text no. 97
[PUBMED]    
98. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al. Human natural killer cells: A unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001;97:3146-51.   Back to cited text no. 98
[PUBMED]    
99. Eriksson M, Meadows SK, Wira CR, Sentman CL. Unique phenotype of human uterine NK cells and their regulation by endogenous TGF-β. J Leukoc Biol 2004;76:667-75.   Back to cited text no. 99
[PUBMED]    
100. Critchley HO, Kelly RW, Brenner RM, Baird DT. The endocrinology of menstruation - A role for the immune system. Clin Endocrinol (Oxf) 2001;55:701-10.   Back to cited text no. 100
[PUBMED]    
101. Coleman KD, Wright JA, Ghosh M, Wira CR, Fahey JV. Estradiol modulation of hepatocyte growth factor by stromal fibroblasts in the female reproductive tract. Fertil Steril 2009;92:1107-9.   Back to cited text no. 101
[PUBMED]    
102. Grant-Tschudy KS, Wira CR. Paracrine mediators of mouse uterine epithelial cell transepithelial resistance in culture. J Reprod Immunol 2005;67:1-12.   Back to cited text no. 102
[PUBMED]    
103. Haddad SN, Wira CR. Keratinocyte growth factor stimulates macrophage inflammatory protein 3α and keratinocyte-derived hemokine secretion by mouse uterine epithelial cells. Am J Reprod Immunol 2010;64:197-211.   Back to cited text no. 103
[PUBMED]    
104. Jacobsson B, Holst RM, Wennerholm UB, Andersson B, Lilja H, Hagberg H. Monocyte chemotactic protein-1 in cervical and amniotic fluid: Relationship to microbial invasion of the amniotic cavity, intra-amniotic inflammation, and preterm delivery. Am J Obstet Gynecol 2003;189:1161-7.   Back to cited text no. 104
[PUBMED]    
105. Matsuda Y, Kouno S, Nakano H. Effects of antibiotic treatment on the concentrations of interleukin-6 and interleukin-8 in cervicovaginal fluid. Fetal Diagn Ther 2002;17:228-32.   Back to cited text no. 105
[PUBMED]    
106. Goepfert AR, Goldenberg RL, Andrews WW, Hauth JC, Mercer B, Iams J, et al. The Preterm Prediction Study: Association between cervical interleukin 6 concentration and spontaneous preterm birth. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 2001;184:483-8.  Back to cited text no. 106
[PUBMED]    
107. Simhan HN, Caritis SN, Krohn MA, Martinez de Tejada B, Landers DV, Hillier SL. Decreased cervical proinflammatory cytokines permit subsequent upper genital tract infection during pregnancy. Am J Obstet Gynecol 2003;189:560-7.   Back to cited text no. 107
[PUBMED]    
108. Romero R, Chaiworapongsa T, Kuivaniemi H, Tromp G. Bacterial vaginosis, the inflammatory response and the risk of preterm birth: A role for genetic epidemiology in the prevention of preterm birth. Am J Obstet Gynecol 2004;190:1509-19.   Back to cited text no. 108
[PUBMED]    
109. Tabibzadeh S. Evidence of T-cell activation and potential cytokine action in human endometrium. J Clin Endocrinol Metab 1990;71:645-9.   Back to cited text no. 109
[PUBMED]    
110. Dominguez F, Pellicer A, Simón C. Paracrine dialogue in implantation. Mol Cell Endocrinol 2002;186:175-81.   Back to cited text no. 110
    
111. Tabibzadeh S. The signals and molecular pathways involved in human menstruation, a unique process of tissue destruction and remodelling. Mol Hum Reprod 1996;2:77-92.   Back to cited text no. 111
[PUBMED]    
112. Givan AL, White HD, Stern JE, Colby E, Gosselin EJ, Guyre PM, et al. Flow cytometric analysis of leukocytes in the human female reproductive tract: Comparison of fallopian tube, uterus, cervix, and vagina. Am J Reprod Immunol 1997;38:350-9.   Back to cited text no. 112
[PUBMED]    
113. Jones RL, Hannan NJ, Kaitu'u TJ, Zhang J, Salamonsen LA. Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab 2004;89:6155-67.   Back to cited text no. 113
[PUBMED]    
114. DeLoia JA, Stewart-Akers AM, Brekosky J, Kubik CJ. Effects of exogenous estrogen on uterine leukocyte recruitment. Fertil Steril 2002;77:548-54.   Back to cited text no. 114
[PUBMED]    
115. Jones RL, Kelly RW, Critchley HO. Chemokine and cyclooxygenase-2 expression in human endometrium coincides with leukocyte accumulation. Hum Reprod 1997;12:1300-6.   Back to cited text no. 115
[PUBMED]    
116. Starkey PM, Clover LM, Rees MC. Variation during the menstrual cycle of immune cell populations in human endometrium. Eur J Obstet Gynecol Reprod Biol 1991;39:203-7.   Back to cited text no. 116
[PUBMED]    
117. Carruba G, D'Agostino P, Miele M, Calabro M, Barbera C, Bella GD, et al. Estrogen regulates cytokine production and apoptosis in PMA-differentiated, macrophage-like U937 cells. J Cell Biochem 2003;90:187-96.   Back to cited text no. 117
    
118. Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D, et al. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol 2009;83:3258-67.   Back to cited text no. 118
[PUBMED]    
119. Cassol E, Cassetta L, Alfano M, Poli G. Macrophage polarization and HIV-1 infection. J Leukoc Biol 2010;87:599-608.   Back to cited text no. 119
[PUBMED]    
120. Wu R, Van der Hoek KH, Ryan NK, Norman RJ, Robker RL. Macrophage contributions to ovarian function. Hum Reprod Update 2004;10:119-33.   Back to cited text no. 120
[PUBMED]    
121. Nagamatsu T, Schust DJ. The contribution of macrophages to normal and pathological pregnancies. Am J Reprod Immunol 2010;63:460-71.   Back to cited text no. 121
[PUBMED]    
122. Iijima N, Thompson JM, Iwasaki A. Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunol 2008;1:451-9.   Back to cited text no. 122
[PUBMED]    
123. Wira CR, Fahey JV, Ghosh M, Patel MV, Hickey DK, Ochiel DO. Sex hormone regulation of innate immunity in the female reproductive tract: The role of epithelial cells in balancing reproductive potential with protection against sexually transmitted pathogens. Am J Reprod Immunol 2010;63:544-65.   Back to cited text no. 123
[PUBMED]    
124. Plaks V, Birnberg T, Berkutzki T, Sela S, BenYashar A, Kalchenko V, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 2008;118:3954-65.   Back to cited text no. 124
[PUBMED]    
125. Kämmerer U, Schoppet M, McLellan AD, Kapp M, Huppertz HI, Kämpgen E, et al. Human decidua contains potent immunostimulatory CD83(+) dendritic cells. Am J Pathol 2000;157:159-69.   Back to cited text no. 125
    
126. Paharkova-Vatchkova V, Maldonado R, Kovats S. Estrogen preferentially promotes the differentiation of CD11c + CD11b(intermediate) dendritic cells from bone marrow precursors. J Immunol 2004;172:1426-36.  Back to cited text no. 126
[PUBMED]    
127. Lee JY, Lee M, Lee SK. Role of endometrial immune cells in implantation. Clin Exp Reprod Med 2011;38:119-25.   Back to cited text no. 127
[PUBMED]    
128. Rebmann V, Regel J, Stolke D, Grosse-Wilde H. Secretion of sHLA-G molecules in malignancies. Semin Cancer Biol 2003;13:371-7.   Back to cited text no. 128
[PUBMED]    
129. Ma D, Gu MJ, Liu BQ. A preliminary study on natural killer activity in patients with gynecologic malignancies. J Tongji Med Univ 1990;10:159-63.  Back to cited text no. 129
[PUBMED]    
130. Yang JH, Chen MJ, Chen HF, Lee TH, Ho HN, Yang YS. Decreased expression of killer cell inhibitory receptors on natural killer cells in eutopic endometrium in women with adenomyosis. Hum Reprod 2004;19:1974-8.   Back to cited text no. 130
[PUBMED]    
131. Maeda N, Izumiya C, Yamamoto Y, Oguri H, Kusume T, Fukaya T. Increased killer inhibitory receptor KIR2DL1 expression among natural killer cells in women with pelvic endometriosis. Fertil Steril 2002;77:297-302.   Back to cited text no. 131
[PUBMED]    
132. Thum MY, Bhaskaran S, Abdalla HI, Ford B, Sumar N, Shehata H, et al. An increase in the absolute count of CD56dimCD16 + CD69 + NK cells in the peripheral blood is associated with a poorer IVF treatment and pregnancy outcome. Hum Reprod 2004;19:2395-400.   Back to cited text no. 132
[PUBMED]    
133. Dosiou C, Giudice LC. Natural killer cells in pregnancy and recurrent pregnancy loss: Endocrine and immunologic perspectives. Endocr Rev 2005;26:44-62.  Back to cited text no. 133
[PUBMED]    
134. Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G. Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 1998;161:5821-4.   Back to cited text no. 134
[PUBMED]    
135. Lidstrom C, Matthiesen L, Berg G, Sharma S, Ernerudh J, Ekerfelt C. Cytokine secretion patterns of NK cells and macrophages in early human pregnancy decidua and blood: Implications for suppressor macrophages in decidua. Am J Reprod Immunol 2003;50:444-52.   Back to cited text no. 135
    
136. Chalifour A, Roger J, Lemieux S, Duplay P. Receptor/ligand avidity determines the capacity of Ly49 inhibitory receptors to interfere with T-cell receptor-mediated activation. Immunology 2003;109:58-67.   Back to cited text no. 136
[PUBMED]    
137. Sivori S, Parolini S, Marcenaro E, Millo R, Bottino C, Moretta A. Triggering receptors involved in natural killer cell-mediated cytotoxicity against choriocarcinoma cell lines. Hum Immunol 2000;61:1055-8.   Back to cited text no. 137
[PUBMED]    
138. Krieg AM. Now I know my CpGs. Trends Microbiol 2001;9:249-52.   Back to cited text no. 138
[PUBMED]    
139. Hunt JS. Immunologically relevant cells in the uterus. Biol Reprod 1994;50:461-6.   Back to cited text no. 139
[PUBMED]    
140. King A, Wellings V, Gardner L, Loke YW. Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughout the menstrual cycle. Hum Immunol 1989;24:195-205.   Back to cited text no. 140
[PUBMED]    
141. King A, Balendran N, Wooding P, Carter NP, Loke YW. CD3-leukocytes present in the human uterus during early placentation: Phenotypic and morphologic characterization of the CD56 ++ population. Dev Immunol 1991;1:169-90.   Back to cited text no. 141
[PUBMED]    
142. Tabibzadeh S. Proliferative activity of lymphoid cells in human endometrium throughout the menstrual cycle. J Clin Endocrinol Metab 1990;70:437-43.   Back to cited text no. 142
[PUBMED]    
143. Kämmerer U, Marzusch K, Kröber S, Ruck P, Handgretinger R, Dietl J. A subset of CD56 + large granular lymphocytes in first-trimester human decidua are proliferating cells. Fertil Steril 1999;71:74-9.   Back to cited text no. 143
    
144. Manaster I, Mandelboim O. The unique properties of uterine NK cells. Am J Reprod Immunol 2010;63:434-44.   Back to cited text no. 144
[PUBMED]    
145. Waldmann TA, Tagaya Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 1999;17:19-49.   Back to cited text no. 145
[PUBMED]    
146. Rosmaraki EE, Douagi I, Roth C, Colucci F, Cumano A, Di Santo JP. Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol 2001;31:1900-9.   Back to cited text no. 146
[PUBMED]    
147. Ye W, Zheng LM, Young JD, Liu CC. The involvement of interleukin (IL)-15 in regulating the differentiation of granulated metrial gland cells in mouse pregnant uterus. J Exp Med 1996;184:2405-10.   Back to cited text no. 147
[PUBMED]    
148. Okada S, Okada H, Sanezumi M, Nakajima T, Yasuda K, Kanzaki H. Expression of interleukin-15 in human endometrium and decidua. Mol Hum Reprod 2000;6:75-80.   Back to cited text no. 148
[PUBMED]    
149. Barber EM, Pollard JW. The uterine NK cell population requires IL-15 but these cells are not required for pregnancy nor the resolution of a Listeria monocytogenes infection. J Immunol 2003;171:37-46.   Back to cited text no. 149
[PUBMED]    
150. Mselle TF, Meadows SK, Eriksson M, Smith JM, Shen L, Wira CR, et al. Unique characteristics of NK cells throughout the human female reproductive tract. Clin Immunol 2007;124:69-76.   Back to cited text no. 150
[PUBMED]    
151. Verma S, King A, Loke YW. Expression of killer cell inhibitory receptors on human uterine natural killer cells. Eur J Immunol 1997;27:979-83.   Back to cited text no. 151
[PUBMED]    
152. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 2003;198:1201-12.   Back to cited text no. 152
[PUBMED]    
153. Ho HN, Chao KH, Chen CK, Yang YS, Huang SC. Activation status of T and NK cells in the endometrium throughout menstrual cycle and normal and abnormal early pregnancy. Hum Immunol 1996;49:130-6.   Back to cited text no. 153
[PUBMED]    
154. Li XF, Charnock-Jones DS, Zhang E, Hiby S, Malik S, Day K, et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J Clin Endocrinol Metab 2001;86:1823-34.  Back to cited text no. 154
[PUBMED]    
155. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992;359:76-9.   Back to cited text no. 155
    
156. Paul TR, Knight ST, Raulston JE, Wyrick PB. Delivery of azithromycin to Chlamydia trachomatis-infected polarized human endometrial epithelial cells by polymorphonuclear leucocytes. J Antimicrob Chemother 1997;39:623-30.   Back to cited text no. 156
[PUBMED]    
157. Godaly G, Bergsten G, Hang L, Fischer H, Frendéus B, Lundstedt AC, et al. Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol 2001;69:899-906.   Back to cited text no. 157
    
158. Gale LM, McColl SR. Chemokines: Extracellular messengers for all occasions? Bioessays 1999;21:17-28.   Back to cited text no. 158
    
159. Faurschou M, Sørensen OE, Johnsen AH, Askaa J, Borregaard N. Defensin-rich granules of human neutrophils: Characterization of secretory properties. Biochim Biophys Acta 2002;1591:29-35.   Back to cited text no. 159
    
160. Nathan CF. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J Clin Invest 1987;80:1550-60.   Back to cited text no. 160
[PUBMED]    
161. Brown EJ. The role of extracellular matrix proteins in the control of phagocytosis. J Leukoc Biol 1986;39:579-91.   Back to cited text no. 161
[PUBMED]    
162. Salamonsen LA, Woolley DE. Menstruation: Induction by matrix metalloproteinases and inflammatory cells. J Reprod Immunol 1999;44:1-27.   Back to cited text no. 162
[PUBMED]    
163. Robertson SA. Seminal fluid signaling in the female reproductive tract: Lessons from rodents and pigs. J Anim Sci 2007;85(13 Suppl):E36-44.   Back to cited text no. 163
    
164. Johnson RM. Murine oviduct epithelial cell cytokine responses to Chlamydia muridarum infection include interleukin-12-p70 secretion. Infect Immun 2004;72:3951-60.   Back to cited text no. 164
[PUBMED]    
165. Patton DL, Thwin SS, Meier A, Hooton TM, Stapleton AE, Eschenbach DA. Epithelial cell layer thickness and immune cell populations in the normal human vagina at different stages of the menstrual cycle. Am J Obstet Gynecol 2000;183:967-73.   Back to cited text no. 165
[PUBMED]    
166. Fidel PL Jr, Barousse M, Espinosa T, Ficarra M, Sturtevant J, Martin DH, et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun 2004;72:2939-46.   Back to cited text no. 166
[PUBMED]    
167. Zhao Y, Chegini N. The expression of granulocyte macrophage-colony stimulating factor (GM-CSF) and receptors in human endometrium. Am J Reprod Immunol 1999;42:303-11.   Back to cited text no. 167
[PUBMED]    
168. Lund-Johansen F, Olweus J, Horejsi V, Skubitz KM, Thompson JS, Vilella R, et al. Activation of human phagocytes through carbohydrate antigens (CD15, sialyl-CD15, CDw17, and CDw65). J Immunol 1992;148:3221-9.  Back to cited text no. 168
[PUBMED]