Authors
1 Department of Immunology, Faculty of Medicine, Isfahan, Iran
2 Department of Immunology, Faculty of Medicine; Cellular and Molecular Immunology Research Center, Isfahan, Iran
3 Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract
Common variable immunodeficfiiency (CVID) is a primary immunodeficiency syndrome representing a heterogeneous set of disorders resulting mostly in antibody deficiency and recurrent infections. However, inflammatory and autoimmune disorders and some kinds of malignancies are frequently reported as a part of the syndrome. Although it is one of the most widespread primary immunodeficiency, only recently some genetic defects in CVID have been identified. Mutations have been detected in inducible T-cell costimulator (ICOS), transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), B-cell activating factor-receptor (BAFF-R), B-cell receptor complex (CD19, CD21 and CD81) and CD20. On the other hand, recent studies have shown a decrease in T-helper-17 cells frequency and their characteristic cytokines in CVID patients and this emphasis on the vital role of the T-cells in immunopathogenesis of the CVID. Furthermore, in the context of autoimmune diseases accompanying CVID, interleukin 9 has recently attracted a plenty of considerations. However, the list of defects is expanding as exact immunologic pathways and genetic disorders in CVID are not yet defined. In this review, we have a special focus on the immunopathogenesis of CVID, recent advances in understanding the underlying etiology and genetics for patients.
Keywords
1. | Hammarström L, Vorechovsky I, Webster D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol 2000;120:225-31. |
2. | Chapel H, Cunningham-Rundles C. Update in understanding common variable immunodeficiency disorders (CVIDs) and the management of patients with these conditions. Br J Haematol 2009;145:709-27. |
3. | Report of an IUIS Scientific Committee. International Union of Immunological Societies. Primary immunodeficiency diseases. Clin Exp Immunol 1999;118 Suppl 1:1-28. |
4. | Yong PF, Thaventhiran JE, Grimbacher B. "A rose is a rose is a rose," but CVID is Not CVID common variable immune deficiency (CVID), what do we know in 2011? Adv Immunol 2011;111:47-107. |
5. | McCabe RP. Gastrointestinal manifestations of non-aids immunodeficiency. Curr Treat Options Gastroenterol 2002;5:17-25. |
6. | Kalha I, Sellin JH. Common variable immunodeficiency and the gastrointestinal tract. Curr Gastroenterol Rep 2004;6:377-83. |
7. | Salzer U, Warnatz K, Peter HH. Common variable immunodeficiency - An update. Arthritis Res Ther 2012;14:223. |
8. | Cunningham-Rundles C. The many faces of common variable immunodeficiency. Hematology Am Soc Hematol Educ Program 2012;2012:301-5. |
9. | Ahn S, Cunningham-Rundles C. Role of B cells in common variable immune deficiency. Expert Rev Clin Immunol 2009;5:557-64. |
10. | Pradhan V, Gorakshakar A. Are mannose-binding lectin gene 2 (MBL2) polymorphisms and MBL deficiency associated with infections? Indian J Hum Genet 2011;17:45-7. [PUBMED] |
11. | Holm AM, Aukrust P, Damås JK, Müller F, Halvorsen B, Frøland SS. Abnormal interleukin-7 function in common variable immunodeficiency. Blood 2005;105:2887-90. |
12. | Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: Clinical and immunological features of 248 patients. Clin Immunol 1999;92:34-48. |
13. | Barbosa RR, Silva SP, Silva SL, Melo AC, Pedro E, Barbosa MP, et al. Primary B-cell deficiencies reveal a link between human IL-17-producing CD4 T-cell homeostasis and B-cell differentiation. PLoS One 2011;6:e22848. |
14. | Kuijpers TW, Bende RJ, Baars PA, Grummels A, Derks IA, Dolman KM, et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest 2010;120:214-22. |
15. | Offer SM, Pan-Hammarström Q, Hammarström L, Harris RS. Unique DNA repair gene variations and potential associations with the primary antibody deficiency syndromes IgAD and CVID. PLoS One 2010;5:e12260. |
16. | Salzer U, Chapel HM, Webster AD, Pan-Hammarström Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 2005;37:820-8. |
17. | Sekine H, Ferreira RC, Pan-Hammarström Q, Graham RR, Ziemba B, de Vries SS, et al. Role for Msh5 in the regulation of Ig class switch recombination. Proc Natl Acad Sci U S A 2007;104:7193-8. |
18. | van Zelm MC, Reisli I, van der Burg M, Castaño D, van Noesel CJ, van Tol MJ, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med 2006;354:1901-12. |
19. | van Zelm MC, Smet J, Adams B, Mascart F, Schandené L, Janssen F, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest 2010;120:1265-74. |
20. | Warnatz K, Salzer U, Rizzi M, Fischer B, Gutenberger S, Böhm J, et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A 2009;106:13945-50. |
21. | Bacchelli C, Buckridge S, Thrasher AJ, Gaspar HB. Translational mini-review series on immunodeficiency: Molecular defects in common variable immunodeficiency. Clin Exp Immunol 2007;149:401-9. |
22. | Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 1999;397:263-6. |
23. | Abbas AK, Litchman AH, Pillai SH. B cell activation and antibody production. In: Abbas AK, editor. Cellular and Molecular Immunology, 1 st ed. Philadelphia: Elsevier-Saunders; 2012. p. 243-67. |
24. | Bossaller L, Burger J, Draeger R, Grimbacher B, Knoth R, Plebani A, et al. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J Immunol 2006;177:4927-32. |
25. | Warnatz K, Bossaller L, Salzer U, Skrabl-Baumgartner A, Schwinger W, van der Burg M, et al. Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood 2006;107:3045-52. |
26. | Vieira PL, Wassink L, Smith LM, Nam S, Kingsbury GA, Gutierrez-Ramos JC, et al. ICOS-mediated signaling regulates cytokine production by human T cells and provides a unique signal to selectively control the clonal expansion of Th2 helper cells. Eur J Immunol 2004;34:1282-90. |
27. | Nurieva RI, Duong J, Kishikawa H, Dianzani U, Rojo JM, Ho Ic, et al. Transcriptional regulation of th2 differentiation by inducible costimulator. Immunity 2003;18:801-11. |
28. | Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, Dräger R, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 2003;4:261-8. |
29. | Salzer U, Maul-Pavicic A, Cunningham-Rundles C, Urschel S, Belohradsky BH, Litzman J, et al. ICOS deficiency in patients with common variable immunodeficiency. Clin Immunol 2004;113:234-40. |
30. | Takahashi N, Matsumoto K, Saito H, Nanki T, Miyasaka N, Kobata T, et al. Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients. J Immunol 2009;182:5515-27. |
31. | Schneider P. The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol 2005;17:282-9. |
32. | Kopecky´ O, Lukesová S. Genetic defects in common variable immunodeficiency. Int J Immunogenet 2007;34:225-9. |
33. | Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999;189:1747-56. |
34. | Castigli E, Scott S, Dedeoglu F, Bryce P, Jabara H, Bhan AK, et al. Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci U S A 2004;101:3903-8. |
35. | Castigli E, Wilson SA, Scott S, Dedeoglu F, Xu S, Lam KP, et al. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med 2005;201:35-9. |
36. | He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 2007;26:812-26. |
37. | Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 2002;3:822-9. |
38. | Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 2005;37:829-34. |
39. | Pan-Hammarström Q, Salzer U, Du L, Björkander J, Cunningham-Rundles C, Nelson DL, et al. Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet 2007;39:429-30. |
40. | Salzer U, Bacchelli C, Buckridge S, Pan-Hammarström Q, Jennings S, Lougaris V, et al. Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood 2009;113:1967-76. |
41. | Lougaris V, Gallizzi R, Vitali M, Baronio M, Salpietro A, Bergbreiter A, et al. A novel compound heterozygous TACI mutation in an autosomal recessive common variable immunodeficiency (CVID) family. Hum Immunol 2012;73:836-9. |
42. | Salzer U, Grimbacher B. Monogenetic defects in common variable immunodeficiency: What can we learn about terminal B cell differentiation? Curr Opin Rheumatol 2006;18:377-82. |
43. | Aghamohammadi A, Lougaris V, Plebani A, Miyawaki T, Durandy A, Hammarström L. Predominantly antibody deficiencies. In: Rezaei N, Aghamohammadi A, Notarangelo LD, editors. Primary Immunodeficiency Diseases: Definition, Diagnosis and Management. Berlin Heidelberg: Springer-Verlag; 2008. p. 97-130. |
44. | Carter RH, Fearon DT. CD19: Lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 1992;256:105-7. |
45. | Fearon DT, Carroll MC. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol 2000;18:393-422. |
46. | Levy S, Todd SC, Maecker HT. CD81 (TAPA-1): A molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol 1998;16:89-109. |
47. | Kanegane H, Agematsu K, Futatani T, Sira MM, Suga K, Sekiguchi T, et al. Novel mutations in a Japanese patient with CD19 deficiency. Genes Immun 2007;8:663-70. |
48. | Mackay F, Schneider P, Rennert P, Browning J. BAFF AND APRIL: A tutorial on B cell survival. Annu Rev Immunol 2003;21:231-64. |
49. | Ng LG, Sutherland AP, Newton R, Qian F, Cachero TG, Scott ML, et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol 2004;173:807-17. |
50. | Thompson JS, Bixler SA, Qian F, Vora K, Scott ML, Cachero TG, et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 2001;293:2108-11. |
51. | Rodig SJ, Shahsafaei A, Li B, Mackay CR, Dorfman DM. BAFF-R, the major B cell-activating factor receptor, is expressed on most mature B cells and B-cell lymphoproliferative disorders. Hum Pathol 2005;36:1113-9. |
52. | Schweighoffer E, Vanes L, Nys J, Cantrell D, McCleary S, Smithers N, et al. The BAFF receptor transduces survival signals by co-opting the B cell receptor signaling pathway. Immunity 2013;38:475-88. |
53. | Losi CG, Silini A, Fiorini C, Soresina A, Meini A, Ferrari S, et al. Mutational analysis of human BAFF receptor TNFRSF13C (BAFF-R) in patients with common variable immunodeficiency. J Clin Immunol 2005;25:496-502. |
54. | Liang Y, Buckley TR, Tu L, Langdon SD, Tedder TF. Structural organization of the human MS4A gene cluster on Chromosome 11q12. Immunogenetics 2001;53:357-68. |
55. | Tedder TF, Engel P. CD20: A regulator of cell-cycle progression of B lymphocytes. Immunol Today 1994;15:450-4. |
56. | Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol 1980;125:1678-85. |
57. | Liang Y, Tedder TF. Identification of a CD20-, FcepsilonRIbeta-, and HTm4-related gene family: Sixteen new MS4A family members expressed in human and mouse. Genomics 2001;72:119-27. |
58. | Park JH, Resnick ES, Cunningham-Rundles C. Perspectives on common variable immune deficiency. Ann N Y Acad Sci 2011;1246:41-9. |
59. | Quast T, Eppler F, Semmling V, Schild C, Homsi Y, Levy S, et al. CD81 is essential for the formation of membrane protrusions and regulates Rac1-activation in adhesion-dependent immune cell migration. Blood 2011;118:1818-27. |
60. | Andria ML, Hsieh CL, Oren R, Francke U, Levy S. Genomic organization and chromosomal localization of the TAPA-1 gene. J Immunol 1991;147:1030-6. |
61. | Ulgiati D, Pham C, Holers VM. Functional analysis of the human complement receptor 2 (CR2/CD21) promoter: Characterization of basal transcriptional mechanisms. J Immunol 2002;168:6279-85. |
62. | Thiel J, Kimmig L, Salzer U, Grudzien M, Lebrecht D, Hagena T, et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol 2012;129:801-8106. |
63. | Tampella G, Baronio M, Vitali M, Soresina A, Badolato R, Giliani S, et al. Evaluation of CARMA1/CARD11 and Bob1 as candidate genes in common variable immunodeficiency. J Investig Allergol Clin Immunol 2011;21:348-53. |
64. | Ganjalikhani Hakemi M, Ghaedi K, Andalib A, Homayouni V, Hosseini M, Rezaei A. RORC2 gene silencing in human Th17 cells by siRNA: Design and evaluation of highly efficient siRNA. Avicenna J Med Biotechnol 2013;5:10-9. |
65. | Adibrad M, Deyhimi P, Ganjalikhani Hakemi M, Behfarnia P, Shahabuei M, Rafiee L. Signs of the presence of Th17 cells in chronic periodontal disease. J Periodontal Res 2012;47:525-31. |
66. | Ganjalikhani Hakemi M, Ghaedi K, Andalib A, Hosseini M, Rezaei A. Optimization of human Th17 cell differentiation in vitro: Evaluating different polarizing factors. in vitro Cell Dev Biol Anim 2011;47:581-92. |
67. | Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 2011;34:108-21. |
68. | Chapel H, Lucas M, Lee M, Bjorkander J, Webster D, Grimbacher B, et al. Common variable immunodeficiency disorders: Division into distinct clinical phenotypes. Blood 2008;112:277-86. |
69. | Lopes-da-Silva S, Rizzo LV. Autoimmunity in common variable immunodeficiency. J Clin Immunol 2008;28 Suppl 1:S46-55. |
70. | Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. The EUROclass trial: Defining subgroups in common variable immunodeficiency. Blood 2008;111:77-85. |
71. | Boileau J, Mouillot G, Gérard L, Carmagnat M, Rabian C, Oksenhendler E, et al. Autoimmunity in common variable immunodeficiency: Correlation with lymphocyte phenotype in the French DEFI study. J Autoimmun 2011;36:25-32. |
72. | Brandtzaeg P. Mucosal immunity: Induction, dissemination, and effector functions. Scand J Immunol 2009;70:505-15. |
73. | Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008;9:641-9. |
74. | Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008;454:350-2. |
75. | Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol 2009;27:485-517. |
76. | Ettinger R, Sims GP, Fairhurst AM, Robbins R, da Silva YS, Spolski R, et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol 2005;175:7867-79. |
77. | Ozaki K, Spolski R, Feng CG, Qi CF, Cheng J, Sher A, et al. A critical role for IL-21 in regulating immunoglobulin production. Science 2002;298:1630-4. |
78. | Hilbert DM, Cancro MP, Scherle PA, Nordan RP, Van Snick J, Gerhard W, et al. T cell derived IL-6 is differentially required for antigen-specific antibody secretion by primary and secondary B cells. J Immunol 1989;143:4019-24. |
79. | Sanos SL, Diefenbach A. Innate lymphoid cells: From border protection to the initiation of inflammatory diseases. Immunol Cell Biol 2013;91:215-24. |
80. | Pearson C, Uhlig HH, Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol 2012;33:289-96. |
81. | Nowak EC, Noelle RJ. Interleukin-9 as a T helper type 17 cytokine. Immunology 2010;131:169-73. |
82. | Leng RX, Pan HF, Ye DQ, Xu Y. Potential roles of IL-9 in the pathogenesis of systemic lupus erythematosus. Am J Clin Exp Immunol 2012;1:28-32. |
83. | Ouyang H, Shi Y, Liu Z, Feng S, Li L, Su N, et al. Increased interleukin-9 and CD4+IL-9+ T cells in patients with systemic lupus erythematosus. Mol Med Rep 2013;7:1031-7. |
84. | Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, et al. IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 2009;206:1653-60. |
85. | Cunningham-Rundles C. Common variable immunodeficiency. Curr Allergy Asthma Rep 2001;1:421-9. |
86. | Agarwal S, Cunningham-Rundles C. Autoimmunity in common variable immunodeficiency. Curr Allergy Asthma Rep 2009;9:347-52. |