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Background: One of the challenges in lentiviral vector–based suicide gene therapy by toxin or apoptosis-
inducing genes is death of packaging cells. Therefore, the process of production of these lentiviral 
particles would be stopped in this step. We proposed that insertion of a reverse promoter between R 
and U5 regions of 5′ long terminal repeat (LTR) in transfer plasmid could be considered as a solution for 
this problem. But it is not known, whether the insertion of R∆U3 sequence between the promoter and 
target gene in proviral genome during the life-cycle of lentivirus may interfere whit gene expression in 
target cells. 
Materials and Methods: The following were performed in this study: insertion of R∆U3 sequence in 
pEGFP-N1 plasmid, evaluation of the expression of eGFP gene after calcium phosphate co-precipitation 
transfection of pCMV-RΔU3-GFP construction in 293T cells, and quantitative assay of eGFP gene by flow 
cytometry technique.
Results: Our results from flow cytometry technique analysis showed that there was no significant difference 
between the expression of eGFP gene in transfected cells with pEGFP-N1 and pCMV-RΔU3-GFP plasmids 
(P > 0.05).
Conclusion: In this step of our strategy, we demonstrated that modification of orientation and location of 
promoter may overcome some issues in lentiviral suicide gene therapy, especially when toxin or apoptosis-
inducing genes are used.
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INTRODUCTION

Since the first successful gene therapy in 1991, several 
clinical trials have attempted to treat a variety of 
diseases such as pancreatic, hepatic, neurological, 
cardiovascular, cancer, and infectious diseases.[1,2] In 
gene therapy, a therapeutic nucleotide sequence is 
transferred into the target cells, so that transcription 
of this sequence compensates the genetic defect of the 
target cells.[3-6] Various viral and non-viral gene delivery 
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systems are used for introduction of the desired gene 
into the target cells.[6-8] However, viral systems are 
more efficient and less toxic than non-viral systems.[1,8] 

Among the viral vectors, lentiviral vectors are widely 
used in gene transfer due to longevity of expression of 
the desired gene in both dividing and non-dividing cells 
and also their application in both ex vivo and in vivo 
studies.[9-11] These vectors are used for the treatment of a 
number of diseases such as b-thalassemia, hemophilia, 
severe combined immunodeficiency (SCID), cystic 
fibrosis, and muscular and neurodegenerative diseases 
in animal models.[12-18] Moreover, they can be used for 
the treatment of acquired immunodeficiency syndrome 
(AIDS) and cancer.[19-21]

Although many attempts have focused on 
understanding the molecular mechanisms involved 
in diseases such as AIDS and cancer, effective 
treatment of these diseases has remained mostly 
unsuccessful.[8,22] However, lentiviral vector–based 
suicide gene therapy appears be a promising approach 
for treatment of these diseases.[23,24] These vectors can 
be used for two different approaches including specific 
killing of target cells and stimulation of immune 
system. In the first strategy, a suicide gene such as 
herpes simplex virus thymidine kinase (HSV-TK), 
diphtheria toxin A, tBid, and tBax is introduced into 
the target cells.[3,25-28] Consequently, it will kill the 
target cells directly. In the second strategy, a vector-
based delivery of interleukin 2 (IL-2) or granulocyte-
macrophage colony stimulating factor (GM-CSF) 
stimulates the immune response.[15] Finally, this 
method will end up in killing of the target cells.

Lentiviruses, a sub-family of retroviruses, have two 
copies of positive single-strand RNA that terminates 
to R and U5 sequences in its 5 end and U3 and 
R sequences in its 3 end.[1,3,9,29,30] They have three 
main genes, gag, pol, and env, that encode capsid 
proteins, enzymes such as reverse transcriptase 
(RT), integrase (IN), protease (PR), and glycoprotein 
envelope, respectively.[3,9] In host cells, the genomic 
RNA is reverse transcribed into double-stranded 
DNA by RT.[3,9,31] The proviral genome has a repetitive 
sequence in both ends, which is called long terminal 
repeat (LTR). LTR includes U3, R, and U5 sequences, 
and contributes to replication and integration and 
transcription processes.[1,3,32-37] The transcription 
process initiates from R region of 5LTR and 
terminates in R region of 3LTR.[9] The U3 region of 
5LTR includes promoter and enhancer sequences to 
which transcription factors of the host cell can bind 
to them. So, this region activates the genes that are 
in the vicinity of this region of provirus in the host 
cell.[32,33] In recently developed lentiviral vectors, a 
part of 3LTR region is deleted.[1,3,20] During the life 

cycle of lentivirus, this deletion is copied into the U3 
region of 5LTR.[26,37] Therefore, by these vectors that 
are called self-inactivating (SIN) vectors, the host cells 
are protected from unfavorable expression of their 
genes.[26] Also, in these vectors, the risk of forming the 
replicative competent lentiviruses (RCL) reduces.[2,26,38]

Lentiviral vectors are prepared by simultaneous 
transfection of three to four plasmids into the 
packaging 293T cell lines.[3,9,29,39] Virulence and non-
essential genes are deleted from the viral genome and 
replaced by the target gene in destination (DEST)
plasmid.[3,9,29] Other plasmids carry the genes encoding 
the viral structural proteins and enzymes. By these 
modifications in the viral genome, the resulted virus 
will be a non-replicable virus and the harvested viral 
particles can be used for transduction into the target 
cells.[9,39]

If the transfer plasmid contains a suicide gene such 
as a toxin or an apoptosis-inducing gene including 
diphtheria toxin A, tBid, tBax, and caspases, gene 
therapy will not be successful because the expression of 
suicide gene results in the death of packaging cells and 
failure of production process of viral particles. There 
are several solutions for this problem. For example, 
inducible systems including tet (tetracycline), steroid 
hormones, radiation, and hypoxia-sensitive promoters 
can conquer this problem.[4,40,41] In tet-regulatable 
system that is widely used in investigations, a promoter 
derived from a bacterial tet-resistance operon is 
used.[3,9] In this system, expression of therapeutic gene 
depends on the presence of tet or one of its derivatives 
(e.g. doxycycline).[4,7] So, the intended gene is only 
expressed when the antibiotic is given to the patient 
(tet-on) and is silent (tet-off) when the antibiotic 
is absent.[4,7] Also, hypoxia and radiation-sensitive 
promoters that can be used for the treatment of cancer 
are attractive choices.[4] In this strategy, a suicide gene 
can be efficiently expressed by one of these promoters. 
For example, the enhanced expression of HSV-TK 
gene by a human hypoxia-inducible enhancer that is 
linked to a-fetoprotein promoter resulted in treatment 
of hepatocellular carcinoma.[42] Furthermore, it was 
established that expression of tumor necrosis factor 
(TNF) by early growth response factor (Egr) promoter, 
a radiation-sensitive promoter, results in a significant 
response to X-ray radiation compared with the response 
when X-ray radiation is solely applied.[43] Therefore, 
the gene expression can be precisely controlled by 
regulation of the presence/absence of inducer factors. 
Unfortunately, promoter leakage is the main drawback 
of the inducible promoters.[4,7]

Another solution is enzyme/prodrug strategy. In this 
way, viral vector encodes an enzyme that enables 
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to change a non-toxic prodrug into a highly toxic 
metabolite. For example, the expression of HSV-
TK gene can transform ganciclovir (prodrug) into 
ganciclovir triphosphate which is a toxic agent for 
transfected cells.[27,28] So, the function of these systems 
“depends on” presence of the prodrug.

Now, we proposed that insertion of a reverse 
promoter between R and U5 regions of 5LTR of 
DEST plasmid may solve these issues. In addition, a 
promoter-less suicide gene should be inserted in the 
same orientation with the promoter near 3LTR on 
a complementary strand. It is expected that during 
the life cycle of lentivirus, the promoter localizes 
near the 3LTR. Thus, the expression of suicide gene 
would be restricted to the transduced cells, but not 
the packaging cells, without dependency on radiation, 
hypoxia, and prodrug.

But before that, it is necessary to answer the question 
whether the insertion of R∆U3 sequence between 
the promoter and suicide gene in proviral genome 
may interrupt the gene expression in the target cells 
[Figure 1].

We evaluated the answer to this question by 
insertion of an of R∆U3 sequence in multiple cloning 
site (MCS) region, between the promoter and green 
fluorescent protein (GFP) gene of  pEGFP-N1 
plasmid which is safer and cheaper than viral 
vectors. Then, the effect of this sequence on the 
GFP gene expression was evaluated in 293T cells 
transfected by this plasmid.

MATERIALS AND METHODS

Confirmation of pEGFP-N1 plasmid
Escherichia coli Top 10F bacterium was obtained 
from Pasteur Institute of Iran and transformed by 
pEGFPN1 plasmid according to the chemical method 
of molecular cloning book.[44] Then pEGFP-N1 plasmid 

was extracted using Fermentas GeneJETTM Plasmid 
Miniprep kit, according to manufacturer’s instruction. 
To confirm the plasmid, GFP gene was then amplified 
by polymerase chain reaction (PCR) using forward 
(5-TTAACTAGTACCGTATTACCGCCATGC-3) and 
reverse (5-ATTACGCGTTAAGATACATTGATGAG 
TTTGGAC-3) primers.

Amplification of R∆U3 sequence 
The following pair of primers, 5-TATGGA 
TCCCTGGAAGGGCTAATTCACTC-3 (forward 
p r i m e r )  a n d  5  - T A A C T G C A G G A A G C A C 
TCAAGGCAAGC-3 (reverse primer), was used in 
PCR to amplify the ΔU3R sequence of pLENTI4-GW/
H1/TO-lamin plasmid (Carlsbad, California, USA, 
InvitrogenTM). PCR condition was 94°C; 3 min, 94°C; 
30 s, 58°C; 30 s, 72°C; 25 s, 30 cycles and 72°C; 3 min, 
and Pyrococcus furiosus DNA polymerase (PFU) 
enzyme was used.

Construction of pCMV-R∆U3-GFP plasmid
pEGFP-N1 plasmid and R∆U3 PCR product were 
digested by BamH1 and Pst1 enzymes and cleaned up 
separately by using gel purification PCR kit (Bioneer,  
South Korea) according to the manufacturer’s 
instruction. To produce pCMV-R∆U3-GFP recombinant 
plasmid, the digested PCR product was ligated to 
linear pEGFP-N1 plasmid using T4 DNA ligase.

Confirmation of pCMV-R∆U3-GFP plasmid
To verify the pCMV-R∆U3-GFP plasmid, colony-
PCR was applied on bacterial matrix by using 
R∆U3 forward primer; 5-TATGGATCCCTG 
GAAGGGCTAATTCACTC-3 and R∆U3 reverse 
primer; 5-TAACTGCAGGAA GCACTCAAGGCAAGC-
3). In colony-PCR, all of the reagents are the same as 
regular PCR, except for template DNA that is a small 
bacterial sample of each colony. To further verify, it 
was required that another PCR be done by forward 
primer: 5-TTAACTAGTACCGTATTACCGCCATGC-
3 (that matches with GFP gene on backbone of 
pEGFP-N1 plasmid) and RΔU3 reverse primer: 
5-TAACTGCAGGAAGCACTCAAGGCAAGC-3 
(that matches with RΔU3 sequence). This PCR can 
be amplified on each colony containing recombinant 
plasmid that has RΔU3 sequence with proper direction. 
After analysis of PCR reactions and selection of one 
colony that contains pCMV-RΔU3-GFP plasmid, the 
plasmid was extracted and digested by two enzymes, 
BamH1 and Pst1, for final confirmation.

Transfection of 293T cells with calcium phosphate 
Half a million 293T cells were seeded in each well of a 
six-well plate to achieve ~80% confluency, after 24 h. 
Two hours before transfection, the medium of each 
well was refreshed with 2 mL medium [Dulbecco’s 

Figure 1: The position of inserted promoter in proviral genome during 
the life cycle of lentivirus
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modified Eagle’s medium (DMEM) contains 10% 
fetal bovine serum (FBS) and 1% Pen-Strep]. As per 
the Trono Lab protocols [45] (with some modifications) 
for calcium phosphate co-precipitation, pEGFP-N1 
plasmid, as a positive control, was transfected in the 
cells of two wells of the plate. The same approach was 
used for transfection of the cells by pCMV-RΔU3-GFP 
plasmid in two wells of that plate. Two intact wells of 
plate were considered as negative control.

Quantitative assay of eGFP expression
Since eGFP protein has fluorescent property, it does 
not require permeabilization of cells and addition of 
any marked antibody. Therefore, it is just necessary 
that the cells of each well be treated with 1 mL  
trypsin-ethylene diamine tetra acetic acid (EDTA) for 
2-3 min. One milliliter of DMEM containing 10% FBS 
was added to each well and the cells were transferred 
to 15 mL falcon tubes and centrifuged in 1500 rpm 
for 5 min. The cell pellets were then washed with 1 
mL phosphate-buffered saline (PBS) and centrifuged 
twice. Finally, 1mL PBS was added to each of the 
collected cell pellets. Then, they were transferred 
to BD (of Becton Dekinson company) tubes for flow 
cytometry analysis.

Statistical analysis
The expression difference of eGFP gene in both groups 
of transfected cells (positive control and sample) was 
analyzed by McNemar’s test.

RESULTS

Confirmation of pEGFP-N1 plasmid
After transformation, several colonies grew on the 
plate. Plasmid was extracted and verified by agarose 
gel electrophoresis. This plasmid was also confirmed 
by amplification of eGFP gene by PCR [Figure 2].

Production of pCMV-R∆U3-GFP construction
Eight colonies of the transformed bacterial plate were 
selected for the preparation of bacterial matrix and 
colony-PCR for amplification of a segment including 
RΔU3 sequence and a part of eGFP gene of pEGFP-N1 
plasmid. The results of PCR analysis displayed that 
colonies 3 and 5-8 were positive [Figure 3]. Since colony 
5 had sharper band compared with the other colonies 
on agarose gel, this colony was selected for propagation 
of pCMV-R∆U3-GFP plasmid. As illustrated in Figure 
4, the results of PCR and digestion of plasmid by two 
enzymes, BamH1 and Pst1, and a double digestion by 
these enzymes confirmed favorable plasmid.

Results of transfection
The expression of eGFP gene in transfected 293T cells 
by pEGFP-N1 and pCMV-RΔU3-GFP plasmids was 

Figure 3: Validation of pCMV-RΔU3-GFP plasmid by colony-PCR. 
Results of PCR analysis of eight colonies by primers used for 
amplification of an 800 bp sequence including RΔU3 and a fragment 
of GFP. Only colonies 3 and 5-8 demonstrated this sequence

Figure 4: Validation of pCMV-RΔU3-GFP plasmid by PCR and 
digestion reactions: (1) PCR product (R∆U3), (2) negative control of 
PCR, (3) DNA ladder 100 bp, (4) 800 nt fragment of PCR, (5) double 
digestion of pCMV-R∆U3-GFP plasmid, (6) double digestion of 
pEGFP-N1 plasmid (a 30 nt segment is separated, but this is invisible 
in this figure), (7) undigested pEGFP-N1 plasmid, and (8) DNA ladder 
1  kb. Arrow indicates production of 150 bp (R∆U3) fragment after 
double digestion of pCMV-R∆U3-GFP plasmid

Figure 2: Verification of pEGFP-N1 plasmid. pEGFP-N1 plasmid was 
validated by appearance of bands on agarose gel: (1) negative control 
(PCR without plasmid), (2) PCR product of eGFP gene of  pEGFP-N1 
plasmid (1662 bp), (3) DNA ladder 1 kb, and (4) the extracted plasmid
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monitored using fluorescent microscopic analysis after 
24 h of transfection. Fortunately, the expression of 
eGFP gene was observed in both positive control and 
sample [Figure 5].

Results of flow cytometry
The expression of eGFP gene was quantified by 
flow cytometry technique [Figure 6]. The results of 
this technique showed that 11,474 and 18,828 cells 
expressed eGFP gene in the M2 region of histograms 
of 100,000 cells that were transfected with pEGFP-N1 
and pCMV-RΔU3-GFP plasmids, respectively. Also, 
2089 and 3802 cells were in M3 regions that severely 
expressed eGFP gene. Statistical analysis showed 
that there was no meaningful difference in gene 
expression between these transfected cell groups  
(P > 0.05) [Figure 7].

Figure 8 illustrates the comparison of mean of 
fluorescent intensity (MFI) in untransfected and 
transfected cells. The highest level of MFI belonged to 
M3 regions of every group of transfected cells. Totally, 
these results demonstrated that RΔU3 sequence did 
not inhibit the expression of eGFP gene of plasmid.

DISCUSSION

In viral gene therapy, introduction of vector into 
special targeted cells, an appropriative expression 
of gene, and timing of its expression are critical 
issues.[3,4] Cell tropism of lentiviral vectors has been 
improved by pseudotyping the envelop proteins 
of wild-type HIV with vesicular stomatitis virus 
glycoprotein (VSV-G).[3,20] High expression of desired 
gene can be provided by strong promoters such as 
cytomegalovirus (CMV) promoter. But they may be 
removed from the body due to activation of immune 
system.[9] A solution for this problem is usage of tissue-
specific promoters that activate immune system less 
and express the desired gene for long term in specific 
cells.[3] For example, the expression of GFP using 
CD44 promoter prolongs about 6 months in Muller 
cells.[46] Also, combination of a-fetoprotein enhancer 
with a phosphoglycerate kinase-1 (PGK-1) promoter 
improves the activity of a-fetoprotein promoter in 
targeted tumor cells.[47]

In some cases, the permanent expression of desired 
gene can be harmful. Therefore, its expression should 
be precisely controlled and time restricted.[4,7] So, 
inducible promoters like tet-regulatable system can 
be used in this context.[48] But each of these promoters 
has some disadvantages. It should be noted that when 
the transfer plasmid is engineered to express a suicide 
gene such as toxin or apoptosis-inducing gene in the 

b c

Figure 5: Results of transfection of pEGFP-N1 and pCMV-RΔU3-GFP 
plasmids in 293T cells. (a and b) illustrate the eGFP gene expression 
of pEGFP-N1 and pCMV-RΔU3-GFP plasmids in cells by fluorescent 
microscope. The green dots point to the expression of eGFP gene. 
Arrows indicate the same cells that expressed eGFP gene and were 
observed with usual light by fluorescent microscope

Figure 6: Evaluation of quantitative expression of eGFP gene by flow cytometry in cells. The green domain that is observed in M1 region results 
from “autofluorescent” property in untransfected cells in each group of cells. The cells that are located in M2 region indicate the expression of 
eGFP gene in positive control and sample groups. M3 region includes the cells that display the highest level of gene expression. (a) Untransfected 
cells [negative control (con−)], (b) transfected cells with pEGFP-N1 plasmid [positive control (con+)], and (c) transfected cells with pCMV-RΔU3-
GFP plasmid (sample) (M, marker)

a

a

b
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target cells, this process may end up to the death of 
packaging cells in its early step. Treating the producer 
cells with a substance that neutralizes the effects of a 
toxin gene can address this issue. For example, addition 
of β-cyclodextrin derivatives can overcome killing 
of packaging cells transfected with Rev-dependent 
lentiviral vectors carrying anthrolysin O.[49] Also, the 
construction of a toxin-resistant packaging cell line 
appears to be a suitable solution for this problem. For 
example, a diphtheria toxin A–resistant human cell line 
was produced by delivery of a mutant human elongation 
factor 2 (EF-2) into HEK 293 cells.[50] It should be noted 
the mentioned strategies are restricted to the specific 
toxin genes such as anthrolysin O and diphtheria toxin 
A. Of course, using inducible promoter and enzyme/
prodrug system can be considered as a solution for this 
issue. But, as discussed, application of each of these 
methods has some limitations.

Our proposal solution, insertion of a reverse promoter 
between R and U5 regions of 5LTR in transfer plasmid, 
has several advantages beside the inhibition of death 
that will be described in the subsequent paragraphs. 
However, it was required to assure that insertion of 
R∆U3 sequence between the promoter and desired 
gene during the life cycle of this virus has no negative 
effect on gene expression. After obtaining favorable 
result, we presume this modification in DEST plasmid 
can convert lentiviral vectors into vigorous tools in 
the field of “suicide gene therapy”. Accordingly, it 
is expected that these vectors can overcome some 
obstacles in suicide gene therapy, such as death 
of packaging cells, leakage of inducible promoters, 
dependency on radiation and hypoxia, and also limited 
application during the study of a particular toxin gene. 
They can also act as an “independent prodrug system” 

in gene therapy. The following discussion points out 
some of the other likely applications of this type of SIN 
vectors in gene therapy in the future.

An application of this modified SIN vector is delivery 
of short hairpin RNA (shRNA) into targeted cells 
such as HIV+ cells. In this method, because of specific 
position of promoter in this vector, the sequence 
encoding shRNA cannot be transcribed in 293T cells. 
But it will be transcribed within the target cells and 
It will produce shRNA that leads to the enzymatic 
destruction of homogenous mRNA and suppression 
of its translation.[7,9,51-53] Also, in lentiviral vectors, 
if there are expression cassettes on lagging strand, 
transcription of these genes can be complemented 
with viral genome, and can make dsRNA and induce 
silencing machine of the cell. This event can cause 
some reduction in viral titration. So, this vector can 
address this problem.

Moreover, there is an obstacle in using zinc finger 
nucleases (ZFNs) for augmenting IN-defective lentiviral 
vectors (IDLVs) and targeting HIV genome in gene 
therapy of AIDS. Each of the ZFNs that targets HIV can 
be expressed and inevitably destroys transfer plasmid 
in packaging cells and breaks down the production of 
viral particles. To predominate this issue, the sequences 
encoding ZFNs are designed in two IDLVs that are 
associated with gene transfer plasmid into targeted 
cells.[9,56] But our suggested lentiviral vector decreases 
the requirement of using three lentiviral vectors to one 
vector in ZFNs application.

CONCLUSION

Our strategy may be applicable to conquer some 

Figure 8: Comparison of mean of fluorescent intensity (MFI) in 293T cell 
groups. M1, M2, and M3 refer to the cells that are before these markers, 
according to the results of flow cytometry. The partial difference that is 
observed in MFI of cells in the regions of M3 and M2 can result from 
the variable efficiency of cell transfection [Con−; untransfected cells, 
con+; transfected cells with pEGFP-N1 plasmid, S (sample); transfected 
cells with pCMV-RΔU3-GFP plasmid]

Figure 7: Comparison of percentage of cells that expressed eGFP 
gene. Total events considered 100,000 cells in each of negative control 
(con−), positive control (con+), and sample (S) cell groups. M1, M2, 
and M3 refer to the cells that are before M1, M2, and M3 markers, 
according to the results of flow cytometry
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pitfalls in lentiviral suicide gene therapy, especially 
with toxin or pro-apoptotic genes. In the preliminary 
step, it was confirmed that RΔU3 has no negative 
effects on GFP expression. So, it is expected that this 
sequence has no interference effects on the expression 
of target gene in a transduced cell.
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