Authors
1 Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract
Background: Extremely low-frequency electromagnetic fields (ELF-EMF) can effect on biological systems and alters some cell functions like proliferation rate. Therefore, we aimed to attempt the evaluation effect of ELF-EMF on the growth of human adipose derived stem cells (hADSCs).
Materials and Methods: ELF-EMF was generated by a system including autotransformer, multi-meter, solenoid coils, teslameter and its probe. We assessed the effect of ELF-EMF with intensity of 0.5 and 1 mT and power line frequency 50 Hz on the survival of hADSCs for 20 and 40 min/day for 7 days by MTT assay. One-way analysis of variance was used to assessment the significant differences in groups.
Results: ELF-EMF has maximum effect with intensity of 1 mT for 20 min/day on proliferation of hADSCs. The survival and proliferation effect (PE) in all exposure groups were significantly higher than that in sham groups (P < 0.05) except in group of 1 mT and 40 min/day.
Conclusion: Our results show that between 0.5 m and 1 mT ELF-EMF could be enhances survival and PE of hADSCs conserving the duration of exposure.
Keywords
1. | Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol 1979;109:273-84. [PUBMED] |
2. | Kheifets LI, Afifi AA, Buffler PA, Zhang ZW. Occupational electric and magnetic field exposure and brain cancer: A meta-analysis. J Occup Environ Med 1995;37:1327-41. [PUBMED] |
3. | Feychting M, Forssén U, Floderus B. Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology 1997;8:384-9. |
4. | Mann K, Röschke J. Sleep under exposure to high-frequency electromagnetic fields. Sleep Med Rev 2004;8:95-107. |
5. | Ahmed Z, Wieraszko A. The mechanism of magnetic field-induced increase of excitability in hippocampal neurons. Brain Res 2008;1221:30-4. [PUBMED] |
6. | Czyz J, Nikolova T, Schuderer J, Kuster N, Wobus AM. Non-thermal effects of power-line magnetic fields (50 Hz) on gene expression levels of pluripotent embryonic stem cells-the role of tumour suppressor p53. Mutat Res 2004;557:63-74. [PUBMED] |
7. | Sarvestani AS, Abdolmaleki P, Mowla SJ, Ghanati F, Heshmati E, Tavasoli Z, et al. Static magnetic fields aggravate the effects of ionizing radiation on cell cycle progression in bone marrow stem cells. Micron 2010;41:101-4. [PUBMED] |
8. | Verkasalo PK, Pukkala E, Hongisto MY, Valjus JE, Järvinen PJ, Heikkilä KV, et al. Risk of cancer in Finnish children living close to power lines. BMJ 1993;307:895-9. |
9. | Tsai MT, Chang WH, Chang K, Hou RJ, Wu TW. Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagnetics 2007;28:519-28. [PUBMED] |
10. | Noriega-Luna B, Sabanero M, Sosa M, Avila-Rodriguez M. Influence of pulsed magnetic fields on the morphology of bone cells in early stages of growth. Micron 2011;42:600-7. [PUBMED] |
11. | Grassi C, D'Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A, et al. Effects of 50 Hz electromagnetic fields on voltage-gated Ca 2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 2004;35:307-15. [PUBMED] |
12. | Mayer-Wagner S, Passberger A, Sievers B, Aigner J, Summer B, Schiergens TS, et al. Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics 2011;32:283-90. [PUBMED] |
13. | Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J Cell Physiol 2008;215:129-39. [PUBMED] |
14. | Zhou J, Ming LG, Ge BF, Wang JQ, Zhu RQ, Wei Z, et al. Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 2011;49:753-61. [PUBMED] |
15. | Sul AR, Park SN, Suh H. Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines. Yonsei Med J 2006;47:852-61. [PUBMED] |
16. | Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7. [PUBMED] |
17. | Huang T, He D, Kleiner G, Kuluz J. Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. J Spinal Cord Med 2007;30 Suppl 1:S35-40. [PUBMED] |
18. | Yan J, Dong L, Zhang B, Qi N. Effects of extremely low-frequency magnetic field on growth and differentiation of human mesenchymal stem cells. Electromagn Biol Med 2010;29:165-76. [PUBMED] |
19. | Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: An underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006;24:150-4. [PUBMED] |
20. | Saino E, Fassina L, Van Vlierberghe S, Avanzini MA, Dubruel P, Magenes G, et al. Effects of electromagnetic stimulation on osteogenic differentiation of human mesenchymal stromal cells seeded onto gelatin cryogel. Int J Immunopathol Pharmacol 2011;24:1-6. |
21. | Manni V, Lisi A, Rieti S, Serafino A, Ledda M, Giuliani L, et al. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics 2004;25:118-26. [PUBMED] |
22. | Sul AR, Park SN, Suh H. Effects of electromagnetic fields on structure and function of rat glioma cell line. Res J Microbiol 2006;1:124-35. |
23. | Van Den Heuvel R, Leppens H, Nêmethova G, Verschaeve L. Haemopoietic cell proliferation in murine bone marrow cells exposed to extreme low frequency (ELF) electromagnetic fields. Toxicol In Vitro 2001;15:351-5. |
24. | Razavi S, Mardani M, Kazemi M, Esfandiari E, Narimani M, Esmaeili A, et al. Effect of leukemia inhibitory factor on the myelinogenic ability of Schwann-like cells induced from human adipose-derived stem cells. Cell Mol Neurobiol 2013;33:283-9. [PUBMED] |
25. | Girgert R, Schimming H, Körner W, Gründker C, Hanf V. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields. Biochem Biophys Res Commun 2005;336:1144-9. |
26. | Ivancsits S, Pilger A, Diem E, Jahn O, Rüdiger HW. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res 2005;583:184-8. |
27. | Cuccurazzu B, Leone L, Podda MV, Piacentini R, Riccardi E, Ripoli C, et al. Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol 2010;226:173-82. [PUBMED] |
28. | Simkó M. Induction of cell activation processes by low frequency electromagnetic fields. ScientificWorldJournal 2004;4 Suppl 2:4-22. |
29. | Oda T, Koike T. Magnetic field exposure saves rat cerebellar granule neurons from apoptosis in vitro. NeurosciLett 2004;365:83-6. |
30. | Harland JD, Liburdy RP. Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics 1997;18:555-62. [PUBMED] |
31. | Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: The calcium-apoptosis link. Nat Rev Mol Cell Biol 2003;4:552-65. [PUBMED] |
32. | Bekhite MM, Figulla HR, Sauer H, Wartenberg M. Static magnetic fields increase cardiomyocyte differentiation of Flk-1(+) cells derived from mouse embryonic stem cells via Ca(2+) influx and ROS production. Int J Cardiol 2012;14489:11-22. |