Bone health after bariatric surgery: Consequences, prevention, and treatment


1 Department of General Surgery, Isfahan University of Medical Sciences, Isfahan, Iran

2 Isfahan Minimally Invasive Surgery and Obesity Research Center, School of Medicine, Al-Zahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran

3 Department of General Surgery, Amin Hospital, Isfahan University of Medical Science, Isfahan, Iran

4 Isfahan Metabolic Bone Disorders Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

5 Student Research Committee, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran


One of the most critical complications of bariatric surgery (BS), which has been widely discussed recently, is its adverse effects on the health of the bones and skeletal system. Studies show that bone mineral density (BMD) decreases significantly in the early years after BS Nutritional deficiencies are a common complication of BS that can last for months to years after surgery. For example, calcium absorption will significantly reduce after BS The role of gut hormones, endocrine factors, and adipokines in altering bone metabolism should never be overlooked. The available information and guidelines emphasize the periodic evaluation of BMD in patients undergoing BS The method of measuring BMD after BS is essential. DXA and quantitative computed tomography (QCT) are two convenient methods for measuring BMD. Many studies indicate a more detailed study of microarchitecture and cortical and trabecular bone mass with the help of QCT. The overall risk of fractures increases years after BS There are some recommendations for overcoming the adverse effects of BS on bone health. Endurance and resistance exercise after BS can help to mitigate BMD reduction and bone changes. In this review, we will explain each of these points in detail.


Chang SH, Stoll CR, Song J, Varela JE, Eagon CJ, Colditz GA. The effectiveness and risks of bariatric surgery: An updated systematic review and meta-analysis, 2003-2012. JAMA Surg 2014;149:275-87.  Back to cited text no. 1
Woodhouse R. Obesity in art: A brief overview. Front Horm Res 2008;36:271-86.  Back to cited text no. 2
Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019;92:121-35.  Back to cited text no. 3
Jehan S, Myers AK, Zizi F, Pandi-Perumal SR, Jean-Louis G, McFarlane SI. Obesity, obstructive sleep apnea and type 2 diabetes mellitus: Epidemiology and pathophysiologic insights. Sleep Med Disord 2018;2:52-8.  Back to cited text no. 4
Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 2017;127:1-4.  Back to cited text no. 5
Biobaku F, Ghanim H, Monte SV, Caruana JA, Dandona P. Bariatric surgery: Remission of inflammation, cardiometabolic benefits, and common adverse effects. J Endocr Soc 2020;4:bvaa049.  Back to cited text no. 6
Livingston EH. Complications of bariatric surgery. Surg Clin North Am 2005;85:853-68, vii.  Back to cited text no. 7
Malinowski SS. Nutritional and metabolic complications of bariatric surgery. Am J Med Sci 2006;331:219-25.  Back to cited text no. 8
Stein EM, Carrelli A, Young P, Bucovsky M, Zhang C, Schrope B, et al. Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab 2013;98:541-9.  Back to cited text no. 9
Stein EM, Silverberg SJ. Bone loss after bariatric surgery: Causes, consequences, and management. Lancet Diabetes Endocrinol 2014;2:165-74.  Back to cited text no. 10
Brzozowska MM, Sainsbury A, Eisman JA, Baldock PA, Center JR. Bariatric surgery, bone loss, obesity and possible mechanisms. Obes Rev 2013;14:52-67.  Back to cited text no. 11
Scibora LM, Ikramuddin S, Buchwald H, Petit MA. Examining the link between bariatric surgery, bone loss, and osteoporosis: A review of bone density studies. Obes Surg 2012;22:654-67.  Back to cited text no. 12
Canales BK, Schafer AL, Shoback DM, Carpenter TO. Gastric bypass in obese rats causes bone loss, vitamin D deficiency, metabolic acidosis, and elevated peptide YY. Surg Obes Relat Dis 2014;10:878-84.  Back to cited text no. 13
Hutton B, Catalá-López F, Moher D. The PRISMA statement extension for systematic reviews incorporating network meta-analysis: PRISMA-NMA. Med Clin (Barc) 2016;147:262-6.  Back to cited text no. 14
Angrisani L, Santonicola A, Iovino P, Formisano G, Buchwald H, Scopinaro N. Bariatric surgery worldwide 2013. Obes Surg 2015;25:1822-32.  Back to cited text no. 15
Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: A systematic review and meta-analysis. JAMA 2004;292:1724-37.  Back to cited text no. 16
Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg 2009;19:1605-11.  Back to cited text no. 17
Franco JV, Ruiz PA, Palermo M, Gagner M. A review of studies comparing three laparoscopic procedures in bariatric surgery: Sleeve gastrectomy, Roux-en-Y gastric bypass and adjustable gastric banding. Obes Surg 2011;21:1458-68.  Back to cited text no. 18
O'Brien PE, Dixon JB, Brown W, Schachter LM, Chapman L, Burn AJ, et al. The laparoscopic adjustable gastric band (Lap-Band): a prospective study of medium-term effects on weight, health and quality of life. Obes Surg 2002;12:652-60.  Back to cited text no. 19
Karmali S, Schauer P, Birch D, Sharma AM, Sherman V. Laparoscopic sleeve gastrectomy: An innovative new tool in the battle against the obesity epidemic in Canada. Can J Surg 2010;53:126-32.  Back to cited text no. 20
Paccou J, Caiazzo R, Lespessailles E, Cortet B. Bariatric surgery and osteoporosis. Calcif Tissue Int 2021;  Back to cited text no. 21
Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med 2007;357:753-61.  Back to cited text no. 22
Misra S, Nandhini BD, Christinajoice S, Kumar SS, Prabhakaran S, Palanivelu C, et al. Is laparoscopic Roux-en-Y gastric bypass still the gold standard procedure for indians? Mid- to long-term outcomes from a tertiary care center. Obes Surg 2020;30:4482-93.  Back to cited text no. 23
Schmidt JB, Pedersen SD, Gregersen NT, Vestergaard L, Nielsen MS, Ritz C, et al. Effects of RYGB on energy expenditure, appetite and glycaemic control: A randomized controlled clinical trial. Int J Obes (Lond) 2016;40:281-90.  Back to cited text no. 24
Lassailly G, Caiazzo R, Ntandja-Wandji LC, Gnemmi V, Baud G, Verkindt H, et al. Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. Gastroenterology 2020;159:1290-301.e5.  Back to cited text no. 25
Thereaux J, Lesuffleur T, Païta M, Czernichow S, Basdevant A, Msika S, et al. Long-term follow-up after bariatric surgery in a national cohort. Br J Surg 2017;104:1362-71.  Back to cited text no. 26
Kim WW, Gagner M, Kini S, Inabnet WB, Quinn T, Herron D, et al. Laparoscopic vs. open biliopancreatic diversion with duodenal switch: A comparative study. J Gastrointest Surg 2003;7:552-7.  Back to cited text no. 27
Strain GW, Torghabeh MH, Gagner M, Ebel F, Dakin GF, Abelson JS, et al. The impact of biliopancreatic diversion with duodenal switch (BPD/DS) over 9 years. Obes Surg 2017;27:787-94.  Back to cited text no. 28
Shoar S, Poliakin L, Rubenstein R, Saber AA. Single anastomosis duodeno-ileal switch (SADIS): A systematic review of efficacy and safety. Obes Surg 2018;28:104-13.  Back to cited text no. 29
Santoro S, Klajner S, Sampaio R. Sleeve gastrectomy and transit bipartition. In: Obesity and Diabetes. Obesity and Diabetes:Springer; 2015. p. 89-110.  Back to cited text no. 30
Bloomberg RD, Fleishman A, Nalle JE, Herron DM, Kini S. Nutritional deficiencies following bariatric surgery: What have we learned? Obes Surg 2005;15:145-54.  Back to cited text no. 31
Cadart O, Degrandi O, Barnetche T, Mehsen-Cetre N, Monsaingeon-Henry M, Pupier E, et al. Long-term effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density: A 4-year longitudinal study. Obes Surg 2020;30:3317-25.  Back to cited text no. 32
Mechanick JI, Apovian C, Brethauer S, Garvey WT, Joffe AM, Kim J, et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures–2019 update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, the Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Endocr Pract 2019;25:1-75.  Back to cited text no. 33
O'Brien PE, Hindle A, Brennan L, Skinner S, Burton P, Smith A, et al. Long-term outcomes after bariatric surgery: A systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding. Obes Surg 2019;29:3-14.  Back to cited text no. 34
Blom-Høgestøl IK, Mala T, Kristinsson JA, et al. Change in bone marrow Adipose tissue one year after Roux-en-Y gastric Bypass: aprospective cohort study. JBMR 21019;34(10):1815-23.  Back to cited text no. 35
Modi AC, Zeller MH, Xanthakos SA, Jenkins TM, Inge TH. Adherence to vitamin supplementation following adolescent bariatric surgery. Obesity (Silver Spring) 2013;21:E190-5.  Back to cited text no. 36
Shapses SA, Sukumar D. Bone metabolism in obesity and weight loss. Annu Rev Nutr 2012;32:287-309.  Back to cited text no. 37
Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res 2011;6:30.  Back to cited text no. 38
Ensrud KE, Fullman RL, Barrett-Connor E, Cauley JA, Stefanick ML, Fink HA, et al. Voluntary weight reduction in older men increases hip bone loss: The osteoporotic fractures in men study. J Clin Endocrinol Metab 2005;90:1998-2004.  Back to cited text no. 39
Von Thun NL, Sukumar D, Heymsfield SB, Shapses SA. Does bone loss begin after weight loss ends? Results 2 years after weight loss or regain in postmenopausal women. Menopause 2014;21:501-8.  Back to cited text no. 40
Williams SE, Cooper K, Richmond B, Schauer P. Perioperative management of bariatric surgery patients: Focus on metabolic bone disease. Cleve Clin J Med 2008;75:333-4, 336, 338.  Back to cited text no. 41
Ben-Porat T, Elazary R, Sherf-Dagan S, Goldenshluger A, Brodie R, Mintz Y, et al. Bone health following bariatric surgery: Implications for management strategies to attenuate bone loss. Adv Nutr 2018;9:114-27.  Back to cited text no. 42
Gregory NS. The effects of bariatric surgery on bone metabolism. Endocrinol Metab Clin North Am 2017;46:105-16.  Back to cited text no. 43
Saad R, Habli D, El Sabbagh R, Chakhtoura M. Bone health following bariatric surgery: An update. J Clin Densitom 2020;23:165-81.  Back to cited text no. 44
Li W, Lin D, Chen J, Zhang Z, Liao Z, Swain M, et al. Role of mechanical stimuli in oral implantation. J Biosci Med 2014;2:63-68.  Back to cited text no. 45
Muschitz C, Kocijan R, Haschka J, Zendeli A, Pirker T, Geiger C, et al. The impact of vitamin D, calcium, protein supplementation, and physical exercise on bone metabolism after bariatric surgery: The BABS study. J Bone Miner Res 2016;31:672-82.  Back to cited text no. 46
Kazakia GJ, Tjong W, Nirody JA, Burghardt AJ, Carballido-Gamio J, Patsch JM, et al. The influence of disuse on bone microstructure and mechanics assessed by HR-pQCT. Bone 2014;63:132-40.  Back to cited text no. 47
Maïmoun L, Fattal C, Micallef JP, Peruchon E, Rabischong P. Bone loss in spinal cord-injured patients: From physiopathology to therapy. Spinal Cord 2006;44:203-10.  Back to cited text no. 48
Zerwekh JE, Ruml LA, Gottschalk F, Pak CY. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 1998;13:1594-601.  Back to cited text no. 49
Villareal DT, Fontana L, Weiss EP, Racette SB, Steger-May K, Schechtman KB, et al. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: A randomized controlled trial. Arch Intern Med 2006;166:2502-10.  Back to cited text no. 50
Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L, et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab 2008;93:3735-40.  Back to cited text no. 51
Giusti V, Gasteyger C, Suter M, Heraief E, Gaillard RC, Burckhardt P. Gastric banding induces negative bone remodelling in the absence of secondary hyperparathyroidism: Potential role of serum C telopeptides for follow-up. Int J Obes (Lond) 2005;29:1429-35.  Back to cited text no. 52
Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, et al. Acromegaly: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2014;99:3933-51.  Back to cited text no. 53
Pluskiewicz W, Bužga M, Holéczy P, Bortlík L, Šmajstrla V, Adamczyk P. Bone mineral changes in spine and proximal femur in individual obese women after laparoscopic sleeve gastrectomy: A short-term study. Obes Surg 2012;22:1068-76.  Back to cited text no. 54
Lindeman KG, Greenblatt LB, Rourke C, Bouxsein ML, Finkelstein JS, Yu EW. Longitudinal 5-year evaluation of bone density and microarchitecture after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 2018;103:4104-12.  Back to cited text no. 55
Krez AN, Stein EM. The skeletal consequences of bariatric surgery. Curr Osteoporos Rep 2020;18:262-72.  Back to cited text no. 56
Gagnon C, Schafer AL. Bone health after bariatric surgery. JBMR Plus 2018;2:121-33.  Back to cited text no. 57
Chamberlain C, Terry R, Shtayyeh T, Martinez C. Recognizing postoperative nutritional complications of bariatric surgery in the primary care patient: A narrative review. J Osteopath Med 2021;121:105-12.  Back to cited text no. 58
Schafer AL, Weaver CM, Black DM, Wheeler AL, Chang H, Szefc GV, et al. Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J Bone Miner Res 2015;30:1377-85.  Back to cited text no. 59
Carrasco F, Basfi-Fer K, Rojas P, Csendes A, Papapietro K, Codoceo J, et al. Calcium absorption may be affected after either sleeve gastrectomy or Roux-en-Y gastric bypass in premenopausal women: A 2-y prospective study. Am J Clin Nutr 2018;108:24-32.  Back to cited text no. 60
Vilarrasa N, San José P, García I, Gómez-Vaquero C, Miras PM, de Gordejuela AG, et al. Evaluation of bone mineral density loss in morbidly obese women after gastric bypass: 3-year follow-up. Obes Surg 2011;21:465-72.  Back to cited text no. 61
Chakhtoura MT, Nakhoul NN, Shawwa K, Mantzoros C, El Hajj Fuleihan GA. Hypovitaminosis D in bariatric surgery: A systematic review of observational studies. Metabolism 2016;65:574-85.  Back to cited text no. 62
Wongdee K, Rodrat M, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Factors inhibiting intestinal calcium absorption: Hormones and luminal factors that prevent excessive calcium uptake. J Physiol Sci 2019;69:683-96.  Back to cited text no. 63
Muschitz C, Kocijan R, Marterer C, Nia AR, Muschitz GK, Resch H, et al. Sclerostin levels and changes in bone metabolism after bariatric surgery. J Clin Endocrinol Metab 2015;100:891-901.  Back to cited text no. 64
Rousseau C, Jean S, Gamache P, Lebel S, Mac-Way F, Biertho L, et al. Change in fracture risk and fracture pattern after bariatric surgery: Nested case-control study. BMJ 2016;354:i3794.  Back to cited text no. 65
Hage MP, El-Hajj Fuleihan G. Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass. Osteoporos Int 2014;25:423-39.  Back to cited text no. 66
Slater GH, Ren CJ, Siegel N, Williams T, Barr D, Wolfe B, et al. Serum fat-soluble vitamin deficiency and abnormal calcium metabolism after malabsorptive bariatric surgery. J Gastrointest Surg 2004;8:48-55.  Back to cited text no. 67
Quercia I, Dutia R, Kotler DP, Belsley S, Laferrère B. Gastrointestinal changes after bariatric surgery. Diabetes Metab 2014;40:87-94.  Back to cited text no. 68
Wong IP, Baldock PA, Herzog H. Gastrointestinal peptides and bone health. Curr Opin Endocrinol Diabetes Obes 2010;17:44-50.  Back to cited text no. 69
Kim TY, Shoback DM, Black DM, Rogers SJ, Stewart L, Carter JT, et al. Increases in PYY and uncoupling of bone turnover are associated with loss of bone mass after gastric bypass surgery. Bone 2020;131:115115.  Back to cited text no. 70
Sloth B, Holst JJ, Flint A, Gregersen NT, Astrup A. Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am J Physiol Endocrinol Metab 2007;292:E1062-8.  Back to cited text no. 71
le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 2006;147:3-8.  Back to cited text no. 72
Wong IP, Driessler F, Khor EC, Shi YC, Hörmer B, Nguyen AD, et al. Peptide YY regulates bone remodeling in mice: A link between gut and skeletal biology. PLoS One 2012;7:e40038.  Back to cited text no. 73
Lee NJ, Nguyen AD, Enriquez RF, Doyle KL, Sainsbury A, Baldock PA, et al. Osteoblast specific Y1 receptor deletion enhances bone mass. Bone 2011;48:461-7.  Back to cited text no. 74
Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Mol Metab 2015;4:437-60.  Back to cited text no. 75
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402:656-60.  Back to cited text no. 76
Camiña JP, Carreira MC, El Messari S, Llorens-Cortes C, Smith RG, Casanueva FF. Desensitization and endocytosis mechanisms of ghrelin-activated growth hormone secretagogue receptor 1a. Endocrinology 2004;145:930-40.  Back to cited text no. 77
Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A 2004;101:4679-84.  Back to cited text no. 78
Fukushima N, Hanada R, Teranishi H, Fukue Y, Tachibana T, Ishikawa H, et al. Ghrelin directly regulates bone formation. J Bone Miner Res 2005;20:790-8.  Back to cited text no. 79
van der Velde M, van der Eerden BC, Sun Y, Almering JM, van der Lely AJ, Delhanty PJ, et al. An age-dependent interaction with leptin unmasks ghrelin's bone-protective effects. Endocrinology 2012;153:3593-602.  Back to cited text no. 80
Carrasco F, Basfi-Fer K, Rojas P, Valencia A, Csendes A, Codoceo J, et al. Changes in bone mineral density after sleeve gastrectomy or gastric bypass: Relationships with variations in vitamin D, ghrelin, and adiponectin levels. Obes Surg 2014;24:877-84.  Back to cited text no. 81
Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 2002;346:1623-30.  Back to cited text no. 82
Bredella MA, Greenblatt LB, Eajazi A, Torriani M, Yu EW. Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue. Bone 2017;95:85-90.  Back to cited text no. 83
Ivaska KK, Huovinen V, Soinio M, Hannukainen JC, Saunavaara V, Salminen P, et al. Changes in bone metabolism after bariatric surgery by gastric bypass or sleeve gastrectomy. Bone 2017;95:47-54.  Back to cited text no. 84
Mônaco-Ferreira DV, Leandro-Merhi VA, Aranha NC, Brandalise A, Brandalise NA. Vitamin D deficiency and paratohommonium increase in late postoperative gastric bypass in Roux-En-Y. Arq Bras Cir Dig 2018;31:e1407.  Back to cited text no. 85
Zhong Q, Itokawa T, Sridhar S, Ding KH, Xie D, Kang B, et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab 2007;292:E543-8.  Back to cited text no. 86
Rao RS, Kini S. GIP and bariatric surgery. Obes Surg 2011;21:244-52.  Back to cited text no. 87
Brakta S, Chorich LP, Kim HG, Coons LA, Katzenellenbogen JA, Hall JE, et al. Long-term follow-up and treatment of a female with complete estrogen insensitivity. J Clin Endocrinol Metab 2020;105:1478-88.  Back to cited text no. 88
Cutler GB Jr. The role of estrogen in bone growth and maturation during childhood and adolescence. J Steroid Biochem Mol Biol 1997;61:141-4.  Back to cited text no. 89
Gilligan DM, Badar DM, Panza JA, Quyyumi AA, Cannon RO 3rd. Acute vascular effects of estrogen in postmenopausal women. Circulation 1994;90:786-91.  Back to cited text no. 90
Sumino H, Ichikawa S, Abe M, Endo Y, Nakajima Y, Minegishi T, et al. Effects of aging and postmenopausal hypoestrogenism on skin elasticity and bone mineral density in Japanese women. Endocr J 2004;51:159-64.  Back to cited text no. 91
Guney E, Kisakol G, Ozgen G, Yilmaz C, Yilmaz R, Kabalak T. Effect of weight loss on bone metabolism: Comparison of vertical banded gastroplasty and medical intervention. Obes Surg 2003;13:383-8.  Back to cited text no. 92
Jäckle K, Kolb JP, Schilling AF, Schlickewei C, Amling M, Rueger JM, et al. Analysis of low-dose estrogen on callus BMD as measured by pQCT in postmenopausal women. BMC Musculoskelet Disord 2020;21:693.  Back to cited text no. 93
Rinonapoli G, Ruggiero C, Meccariello L, Bisaccia M, Ceccarini P, Caraffa A. Osteoporosis in men: A review of an underestimated bone condition. Int J Mol Sci 2021;22.  Back to cited text no. 94
Svartberg J, Agledahl I, Figenschau Y, Sildnes T, Waterloo K, Jorde R. Testosterone treatment in elderly men with subnormal testosterone levels improves body composition and BMD in the hip. Int J Impot Res 2008;20:378-87.  Back to cited text no. 95
Mohamad NV, Soelaiman IN, Chin KY. A concise review of testosterone and bone health. Clin Interv Aging 2016;11:1317-24.  Back to cited text no. 96
Hammoud AO, Gibson M, Peterson CM, Meikle AW, Carrell DT. Impact of male obesity on infertility: A critical review of the current literature. Fertil Steril 2008;90:897-904.  Back to cited text no. 97
Vettor R, Milan G, Rossato M, Federspil G. Review article: Adipocytokines and insulin resistance. Aliment Pharmacol Ther 2005;22 Suppl 2:3-10.  Back to cited text no. 98
Botella-Carretero JI, Balsa JA, Gómez-Martin JM, Peromingo R, Huerta L, Carrasco M, et al. Circulating free testosterone in obese men after bariatric surgery increases in parallel with insulin sensitivity. J Endocrinol Invest 2013;36:227-32.  Back to cited text no. 99
Woodard G, Ahmed S, Podelski V, Hernandez-Boussard T, Presti J Jr., Morton JM. Effect of Roux-en-Y gastric bypass on testosterone and prostate-specific antigen. Br J Surg 2012;99:693-8.  Back to cited text no. 100
Cherif R, Mahjoub F, Sahli H, Cheour E, Vico L, Sakly M, et al. Positive association of obesity and insulin resistance with bone mineral density in tunisian postmenopausal women. J Clin Densitom 2018;21:163-71.  Back to cited text no. 101
Napoli N, Conte C, Pedone C, Strotmeyer ES, Barbour KE, Black DM, et al. Effect of insulin resistance on BMD and fracture risk in older adults. J Clin Endocrinol Metab 2019;104:3303-10.  Back to cited text no. 102
Thomas T, Burguera B, Melton LJ 3rd, Atkinson EJ, O'Fallon WM, Riggs BL, et al. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 2001;29:114-20.  Back to cited text no. 103
Yüksel O, Dökmetaş HS, Topcu S, Erselcan T, Sencan M. Relationship between bone mineral density and insulin resistance in polycystic ovary syndrome. J Bone Miner Metab 2001;19:257-62.  Back to cited text no. 104
Dirksen C, Jørgensen NB, Bojsen-Møller KN, Jacobsen SH, Hansen DL, Worm D, et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia 2012;55:1890-901.  Back to cited text no. 105
Xu XJ, Apovian C, Hess D, Carmine B, Saha A, Ruderman N. Improved insulin sensitivity 3 months after RYGB surgery is associated with increased subcutaneous adipose tissue AMPK activity and decreased oxidative stress. Diabetes 2015;64:3155-9.  Back to cited text no. 106
Conde J, Scotece M, Gómez R, López V, Gómez-Reino JJ, Lago F, et al. Adipokines: Biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. Biofactors 2011;37:413-20.  Back to cited text no. 107
Adali E, Yildizhan R, Kolusari A, Kurdoglu M, Bugdayci G, Sahin HG, et al. Increased visfatin and leptin in pregnancies complicated by pre-eclampsia. J Matern Fetal Neonatal Med 2009;22:873-9.  Back to cited text no. 108
Chwalba A, Machura E, Ziora K, Ziora D. The role of adipokines in the pathogenesis and course of selected respiratory diseases. Endokrynol Pol 2019;70:504-10.  Back to cited text no. 109
Legroux-Gérot I, Vignau J, Viltart O, Hardouin P, Chauveau C, Cortet B. Adipokines and bone status in a cohort of anorexic patients. Joint Bone Spine 2019;86:95-101.  Back to cited text no. 110
Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763-70.  Back to cited text no. 111
Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;334:292-5.  Back to cited text no. 112
Williams KW, Scott MM, Elmquist JK. From observation to experimentation: Leptin action in the mediobasal hypothalamus. Am J Clin Nutr 2009;89:985S-90S.  Back to cited text no. 113
Upadhyay J, Farr OM, Mantzoros CS. The role of leptin in regulating bone metabolism. Metabolism 2015;64:105-13.  Back to cited text no. 114
Greco EA, Lenzi A, Migliaccio S. The obesity of bone. Ther Adv Endocrinol Metab 2015;6:273-86.  Back to cited text no. 115
Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell 2000;100:197-207.  Back to cited text no. 116
Thomas T, Burguera B. Is leptin the link between fat and bone mass? J Bone Miner Res 2002;17:1563-9.  Back to cited text no. 117
Whipple T, Sharkey N, Demers L, Williams N. Leptin and the skeleton. Clin Endocrinol (Oxf) 2002;57:701-11.  Back to cited text no. 118
Hamrick MW. Leptin, bone mass, and the thrifty phenotype. J Bone Miner Res 2004;19:1607-11.  Back to cited text no. 119
Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hartzell D, Baile CA. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res 2005;20:994-1001.  Back to cited text no. 120
Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 2000;92:73-8.  Back to cited text no. 121
Takeshita N, Mutoh S, Yamaguchi I. Osteopenia in genetically diabetic DB/DB mice and effects of 1alpha-hydroxyvitamin D3 on the osteopenia. Basic Research Group. Life Sci 1995;56:1095-101.  Back to cited text no. 122
Liu K, Liu P, Liu R, Wu X, Cai M. Relationship between serum leptin levels and bone mineral density: A systematic review and meta-analysis. Clin Chim Acta 2015;444:260-3.  Back to cited text no. 123
Münzberg H, Björnholm M, Bates SH, Myers MG Jr. Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci 2005;62:642-52.  Back to cited text no. 124
Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 2005;331:520-6.  Back to cited text no. 125
Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002;360:57-8.  Back to cited text no. 126
Yatagai T, Nagasaka S, Taniguchi A, Fukushima M, Nakamura T, Kuroe A, et al. Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism 2003;52:1274-8.  Back to cited text no. 127
Carsote M, Petrescu R, Nica AE, Ghemigian A, Paduraru DN, Valea A. Bariatric surgery and osteoporosis. Romanian Med J 2016;63:297-299.  Back to cited text no. 128
Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, et al. Influence of adipokines and ghrelin on bone mineral density and fracture risk: A systematic review and meta-analysis. J Clin Endocrinol Metab 2011;96:2703-13.  Back to cited text no. 129
Carrasco F, Ruz M, Rojas P, Csendes A, Rebolledo A, Codoceo J, et al. Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg 2009;19:41-6.  Back to cited text no. 130
Bruno C, Fulford AD, Potts JR, McClintock R, Jones R, Cacucci BM, et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: Correlation with the reduction in leptin. J Clin Endocrinol Metab 2010;95:159-66.  Back to cited text no. 131
Wang T, He C. TNF-α and IL-6: The Link between Immune and Bone System. Curr Drug Targets 2020;21:213-27.  Back to cited text no. 132
Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010;140:197-208.  Back to cited text no. 133
Viana EC, Araujo-Dasilio KL, Miguel GP, Bressan J, Lemos EM, Moyses MR, et al. Gastric bypass and sleeve gastrectomy: The same impact on IL-6 and TNF-α. Prospective clinical trial. Obes Surg 2013;23:1252-61.  Back to cited text no. 134
Peng XD, Xie H, Zhao Q, Wu XP, Sun ZQ, Liao EY. Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin Chim Acta 2008;387:31-5.  Back to cited text no. 135
Sucunza N, Barahona MJ, Resmini E, Fernández-Real JM, Ricart W, Farrerons J, et al. A link between bone mineral density and serum adiponectin and visfatin levels in acromegaly. J Clin Endocrinol Metab 2009;94:3889-96.  Back to cited text no. 136
Parreño Caparrós E, Illán Gómez F, Gonzálvez Ortega M, Orea Soler I, Pérez Paredes M, Lozano Almela ML, et al. Resistin in morbidly obese patients before and after gastric bypass surgery. Nutr Hosp 2017;34:1333-7.  Back to cited text no. 137
Barnes AS. Obesity and sedentary lifestyles: Risk for cardiovascular disease in women. Tex Heart Inst J 2012;39:224-7.  Back to cited text no. 138
Bertisch SM, Wee CC, McCarthy EP. Use of complementary and alternative therapies by overweight and obese adults. Obesity (Silver Spring) 2008;16:1610-5.  Back to cited text no. 139
Neff KJ, Ferrannini E, Le Roux CW. Treatment of obesity: Bariatric surgery. In: International Textbook of Diabetes Mellitus. Wiley Online Library;2015. p. 505-18.  Back to cited text no. 140
Hassannejad A, Khalaj A, Mansournia MA, Rajabian Tabesh M, Alizadeh Z. The effect of aerobic or aerobic-strength exercise on body composition and functional capacity in patients with BMI≥35 after bariatric surgery: A randomized control trial. Obes Surg 2017;27:2792-801.  Back to cited text no. 141
Welch G, Wesolowski C, Piepul B, Kuhn J, Romanelli J, Garb J. Physical activity predicts weight loss following gastric bypass surgery: Findings from a support group survey. Obes Surg 2008;18:517-24.  Back to cited text no. 142
Bond DS, Phelan S, Wolfe LG, Evans RK, Meador JG, Kellum JM, et al. Becoming physically active after bariatric surgery is associated with improved weight loss and health-related quality of life. Obesity (Silver Spring) 2009;17:78-83.  Back to cited text no. 143
Livhits M, Mercado C, Yermilov I, Parikh JA, Dutson E, Mehran A, et al. Exercise following bariatric surgery: Systematic review. Obes Surg 2010;20:657-65.  Back to cited text no. 144
Lorentzon M, Mellström D, Ohlsson C. Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: The GOOD study. J Bone Miner Res 2005;20:1936-43.  Back to cited text no. 145
Diniz-Sousa F, Veras L, Boppre G, Sa-Couto P, Devezas V, Santos-Sousa H, et al. The effect of an exercise intervention program on bone health after bariatric surgery: A randomized controlled trial. J Bone Miner Res 2021;36:489-99.  Back to cited text no. 146
In G, Taskin HE, Al M, Alptekin HK, Zengin K, Yumuk V, et al. Comparison of 12-week fitness protocols following bariatric surgery: Aerobic exercise versus aerobic exercise and progressive resistance. Obes Surg 2021;31:1475-84.  Back to cited text no. 147
Hansen D, Decroix L, Devos Y, Nocca D, Cornelissen V, Dillemans B, et al. Towards optimized care after bariatric surgery by physical activity and exercise intervention: A review. Obes Surg 2020;30:1118-25.  Back to cited text no. 148
Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev 2016;37:135-87.  Back to cited text no. 149
Nakamura KM, Haglind EG, Clowes JA, Achenbach SJ, Atkinson EJ, Melton LJ 3rdet al. Fracture risk following bariatric surgery: A population-based study. Osteoporos Int 2014;25:151-8.  Back to cited text no. 150
Heber D, Greenway FL, Kaplan LM, Livingston E, Salvador J, Still C, et al. Endocrine and nutritional management of the post-bariatric surgery patient: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2010;95:4823-43.  Back to cited text no. 151
Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient--2013 update: Cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Endocr Pract 2013;19:337-72.  Back to cited text no. 152
Tothill P, Hannan WJ, Cowen S, Freeman CP. Anomalies in the measurement of changes in total-body bone mineral by dual-energy X-ray absorptiometry during weight change. J Bone Miner Res 1997;12:1908-21.  Back to cited text no. 153
Van Loan MD. Is Dual-Energy X-ray Absorptiometry Ready for Prime Time in the Clinical Evaluation of Body Composition? The American Journal Of Clinical Nutrition; 1998:68:1155-56.  Back to cited text no. 154
Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: Review of physical concepts. Am J Physiol 1996;271:E941-51.  Back to cited text no. 155
Zou D, Sun Z, Zhou S, Zhong W, Li W. Hounsfield units value is a better predictor of pedicle screw loosening than the T-score of DXA in patients with lumbar degenerative diseases. Eur Spine J 2020;29:1105-11.  Back to cited text no. 156
Wosje KS, Binkley TL, Specker BL. Comparison of bone parameters by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography in Hutterite vs. non-Hutterite women aged 35-60 years. Bone 2001;29:192-7.  Back to cited text no. 157
Chen X, Zhang C, Li J, Liu W, Zhang J, Zhou Z. Effects of Laparoscopic Sleeve Gastrectomy on Bone Mineral Density and Bone Metabolism in Chinese Patients with Obesity. Diabetes Metab Syndr Obes 2020;13:4095-103.  Back to cited text no. 158
Gerber P. Bariatric Surgery: Predictors of Outcome: Results from a National Database (SOREG) with Particular Emphasis on Patients' Age; Karolina Institute/Dept of Clinical Science: 2021.  Back to cited text no. 159
Luger M, Kruschitz R, Winzer E, Schindler K, Grabovac I, Kainberger F, et al. Changes in bone mineral density following weight loss induced by one-anastomosis gastric bypass in patients with vitamin D supplementation. Obes Surg 2018;28:3454-65.  Back to cited text no. 160
Ieong K, Ardila-Gatas J, Yang J, Zhang X, Tsui ST, Spaniolas K, et al. Bone mineral density changes after bariatric surgery. Surg Endosc 2021;35:4763-70.  Back to cited text no. 161
Brzozowska MM, Tran T, Bliuc D, Jorgensen J, Talbot M, Fenton-Lee D, et al. Roux-en-Y gastric bypass and gastric sleeve surgery result in long term bone loss. Int J Obes (Lond) 2021;45:235-46.  Back to cited text no. 162
Lindeman KG, Rushin CC, Cheney MC, Bouxsein ML, Hutter MM, Yu EW. Bone density and trabecular morphology at least 10 years after gastric bypass and gastric banding. J Bone Miner Res 2020;35:2132-42.  Back to cited text no. 163
Jaruvongvanich V, Vantanasiri K, Upala S, Ungprasert P. Changes in bone mineral density and bone metabolism after sleeve gastrectomy: A systematic review and meta-analysis. Surg Obes Relat Dis 2019;15:1252-60.  Back to cited text no. 164
Tian Z, Fan XT, Li SZ, Zhai T, Dong J. Changes in bone metabolism after sleeve gastrectomy versus gastric bypass: A meta-analysis. Obes Surg 2020;30:77-86.  Back to cited text no. 165
Ko BJ, Myung SK, Cho KH, Park YG, Kim SG, Kim do H, et al. Relationship between bariatric surgery and bone mineral density: A meta-analysis. Obes Surg 2016;26:1414-21.  Back to cited text no. 166
Yu EW, Thomas BJ, Brown JK, Finkelstein JS. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 2012;27:119-24.  Back to cited text no. 167
Yu EW, Bouxsein ML, Roy AE, Baldwin C, Cange A, Neer RM, et al. Bone loss after bariatric surgery: Discordant results between DXA and QCT bone density. J Bone Miner Res 2014;29:542-50.  Back to cited text no. 168
Tan HC, Tan MZ, Tham KW, Pasupathy S, Eng AK, Ganguly S, et al. One year changes in QCT and DXA bone densities following bariatric surgery in a multiethnic Asian cohort. Osteoporos Sarcopenia 2015;1:115-20.  Back to cited text no. 169
Bolotin HH. DXA in vivo BMD methodology: An erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 2007;41:138-54.  Back to cited text no. 170
Javed F, Yu W, Thornton J, Colt E. Effect of fat on measurement of bone mineral density. Int J Body Compos Res 2009;7:37-40.  Back to cited text no. 171
Tothill P. Dual-energy x-ray absorptiometry measurements of total-body bone mineral during weight change. J Clin Densitom 2005;8:31-8.  Back to cited text no. 172
Kim J, Nimeri A, Khorgami Z, El Chaar M, Lima AG, Vosburg RW, et al. Metabolic bone changes after bariatric surgery: 2020 update, American Society for Metabolic and Bariatric Surgery Clinical Issues Committee position statement. Surg Obes Relat Dis 2021;17:1-8.  Back to cited text no. 173
Schafer AL, Kazakia GJ, Vittinghoff E, Stewart L, Rogers SJ, Kim TY, et al. Effects of gastric bypass surgery on bone mass and microarchitecture occur early and particularly impact postmenopausal women. J Bone Miner Res 2018;33:975-86.  Back to cited text no. 174
Zhang Q, Chen Y, Li J, Chen D, Cheng Z, Xu S, et al. A meta-analysis of the effects of bariatric surgery on fracture risk. Obes Rev 2018;19:728-36.  Back to cited text no. 175
Axelsson KF, Werling M, Eliasson B, Szabo E, Näslund I, Wedel H, et al. Fracture risk after gastric bypass surgery: A retrospective cohort study. J Bone Miner Res 2018;33:2122-31.  Back to cited text no. 176
Berarducci A, Haines K, Murr MM. Incidence of bone loss, falls, and fractures after Roux-en-Y gastric bypass for morbid obesity. Appl Nurs Res 2009;22:35-41.  Back to cited text no. 177
Khalid SI, Omotosho PA, Spagnoli A, Torquati A. Association of bariatric surgery with risk of fracture in patients with severe obesity. JAMA Netw Open 2020;3:e207419.  Back to cited text no. 178
Douglas IJ, Bhaskaran K, Batterham RL, Smeeth L. Bariatric surgery in the United Kingdom: A cohort study of weight loss and clinical outcomes in routine clinical care. PLoS Med 2015;12:e1001925.  Back to cited text no. 179
Lalmohamed A, de Vries F, Bazelier MT, Cooper A, van Staa TP, Cooper C, et al. Risk of fracture after bariatric surgery in the United Kingdom: Population based, retrospective cohort study. BMJ 2012;345:e5085.  Back to cited text no. 180
Maghrabi AH, Wolski K, Abood B, Licata A, Pothier C, Bhatt DL, et al. Two-year outcomes on bone density and fracture incidence in patients with T2DM randomized to bariatric surgery versus intensive medical therapy. Obesity 2015;23:2344-8.  Back to cited text no. 181
Chin WL, Chi PJ, Hung WC, Lin CW, Chen CY, Chen JH. Bariatric surgery decreases the risk of non-traffic accident-related fractures in patients with obesity: Real-world data from Taiwan. Obes Surg 2021;31:2231-40.  Back to cited text no. 182
Yu EW, Kim SC, Sturgeon DJ, Lindeman KG, Weissman JS. Fracture risk after Roux-en-Y gastric bypass vs adjustable gastric banding among medicare beneficiaries. JAMA Surg 2019;154:746-53.  Back to cited text no. 183
Paccou J, Martignène N, Lespessailles E, Babykina E, Pattou F, Cortet B, et al. Gastric bypass but not sleeve gastrectomy increases risk of major osteoporotic fracture: French population-based cohort study. J Bone Miner Res 2020;35:1415-23.  Back to cited text no. 184
Aasheim ET, Hofsø D, Hjelmesaeth J, Birkeland KI, Bøhmer T. Vitamin status in morbidly obese patients: A cross-sectional study. Am J Clin Nutr 2008;87:362-9.  Back to cited text no. 185
Gehrer S, Kern B, Peters T, Christoffel-Courtin C, Peterli R. Fewer nutrient deficiencies after laparoscopic sleeve gastrectomy (LSG) than after laparoscopic Roux-Y-gastric bypass (LRYGB) – A prospective study. Obes Surg 2010;20:447-53.  Back to cited text no. 186
Krzizek EC, Brix JM, Herz CT, Kopp HP, Schernthaner GH, Schernthaner G, et al. Prevalence of micronutrient deficiency in patients with morbid obesity before bariatric surgery. Obes Surg 2018;28:643-8.  Back to cited text no. 187
O'Kane M, Parretti HM, Pinkney J, Welbourn R, Hughes CA, Mok J, et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery-2020 update. Obes Rev 2020;21:e13087.  Back to cited text no. 188
Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol 2014;64:e77-137.  Back to cited text no. 189
Parrott J, Frank L, Rabena R, Craggs-Dino L, Isom KA, Greiman L. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the surgical weight loss patient 2016 update: Micronutrients. Surg Obes Relat Dis 2017;13:727-41.  Back to cited text no. 190
Elhag W, El Ansari W, Abdulrazzaq S, Abdullah A, Elsherif M, Elgenaied I. Evolution of 29 anthropometric, nutritional, and cardiometabolic parameters among morbidly obese adolescents 2 years post sleeve gastrectomy. Obes Surg 2018;28:474-82.  Back to cited text no. 191
Bassatne A, Chakhtoura M, Saad R, Fuleihan GE. Vitamin D supplementation in obesity and during weight loss: A review of randomized controlled trials. Metabolism 2019;92:193-205.  Back to cited text no. 192
Flores L, Moizé V, Ortega E, Rodríguez L, Andreu A, Filella X, et al. Prospective study of individualized or high fixed doses of vitamin D supplementation after bariatric surgery. Obes Surg 2015;25:470-6.  Back to cited text no. 193
Allied Health Sciences Section Ad Hoc Nutrition Committee, Aills L, Blankenship J, Buffington C, Furtado M, Parrott J. ASMBS allied health nutritional guidelines for the surgical weight loss patient. Surg Obes Relat Dis 2008;4:S73-108.  Back to cited text no. 194
Liu Y, Côté MM, Cheney MC, Lindeman KG, Rushin CC, Hutter MM, et al. Zoledronic acid for prevention of bone loss in patients receiving bariatric surgery. Bone Rep 2021;14:100760.  Back to cited text no. 195
Rino Y, Aoyama T, Atsumi Y, Yamada T, Yukawa N. Metabolic bone disorders after gastrectomy: Inevitable or preventable? Surg Today 2021; 021-02253-1.  Back to cited text no. 196
Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS, Bhaskara Rao KV. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One 2014;9:e90972.  Back to cited text no. 197
Mahawar KK, Parmar C, Graham Y. One anastomosis gastric bypass: Key technical features, and prevention and management of procedure-specific complications. Minerva Chir 2019;74:126-36.  Back to cited text no. 198