1. |
Rasmussen AM, Borelli G, Hoel HJ, Lislerud K, Gaudernack G, Kvalheim G, et al. Ex vivo expansion protocol for human tumor specific T cells for adoptive T cell therapy. J Immunol Methods 2010;355:52-60.
|
2. |
Lewis MD, de Leenheer E, Fishman S, Siew LK, Gross G, Wong FS. A reproducible method for the expansion of mouse CD8+T lymphocytes. J Immunol Methods 2015;417:134-8.
|
3. |
Wu TD, Madireddi S, de Almeida PE, Banchereau R, Chen YJ, Chitre AS, et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 2020;579:274-8.
|
4. |
Janelle V, Delisle JS. T-cell dysfunction as a limitation of adoptive immunotherapy: Current concepts and mitigation strategies. Cancers (Basel) 2021;13:598.
|
5. |
Titov A, Zmievskaya E, Ganeeva I, Valiullina A, Petukhov A, Rakhmatullina A, et al. Adoptive immunotherapy beyond CAR T-cells. Cancers (Basel) 2021;13:743.
|
6. |
Ho PC, Meeth KM, Tsui YC, Srivastava B, Bosenberg MW, Kaech SM. Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNγ. Cancer Res 2014;74:3205-17.
|
7. |
Bos R, Sherman LA. CD4+T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+T lymphocytes. Cancer Res 2010;70:8368-77.
|
8. |
Zhang DKY, Cheung AS, Mooney DJ. Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds. Nat Protoc 2020;15:773-98.
|
9. |
Thomas AK, Maus MV, Shalaby WS, June CH, Riley JL. A cell-based artificial antigen-presenting cell coated with anti-CD3 and CD28 antibodies enables rapid expansion and long-term growth of CD4 T lymphocytes. Clin Immunol 2002;105:259-72.
|
10. |
Sato K, Kondo M, Sakuta K, Hosoi A, Noji S, Sugiura M, et al. Impact of culture medium on the expansion of T cells for immunotherapy. Cytotherapy 2009;11:936-46.
|
11. |
Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4+T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther 2021;28:5-17.
|
12. |
Naota H, Miyahara Y, Okumura S, Kuzushima K, Akatsuka Y, Hiasa A, et al. Generation of peptide-specific CD8+T cells by phytohemagglutinin-stimulated antigen-mRNA-transduced CD4+T cells. J Immunol Methods 2006;314:54-66.
|
13. |
Zamani A, Vahidinia A, Ghannad MS. The effect of garlic consumption on Th1/Th2 cytokines in phytohemagglutinin (PHA) activated rat spleen lymphocytes. Phytother Res 2009;23:579-81.
|
14. |
Oppenheim JJ. IL-2: More than a T cell growth factor. J Immunol 2007;179:1413-4.
|
15. |
Fischer HJ, Sie C, Schumann E, Witte AK, Dressel R, van den Brandt J, et al. The insulin receptor plays a critical role in T cell function and adaptive immunity. J Immunol 2017;198:1910-20.
|
16. |
Choi E, Yu H. Spindle checkpoint regulators in insulin signaling. Front Cell Dev Biol 2018;6:161.
|
17. |
Ti D, Bai M, Li X, Wei J, Chen D, Wu Z, et al. Adaptive T cell immunotherapy in cancer. Sci China Life Sci 2021;64:363-71.
|
18. |
Torabi-Rahvar M, Aghayan HR, Ahmadbeigi N. Antigen-independent killer cells prepared for adoptive immunotherapy: One source, divergent protocols, diverse nomenclature. J Immunol Methods 2020;477:112690.
|
19. |
Disis ML, Bernhard H, Jaffee EM. Use of tumour-responsive T cells as cancer treatment. Lancet 2009;373:673-83.
|
20. |
Ye J, Cao W, Tao Z, Zhao S, Wang C, Xu X, et al. Novel method for effectively amplifying human peripheral blood T cells in vitro. Exp Cell Res 2021;399:112451.
|
21. |
Kondo M, Sakuta K, Noguchi A, Ariyoshi N, Sato K, Sato S, et al. Zoledronate facilitates large-scale ex vivo expansion of functional γδ T cells from cancer patients for use in adoptive immunotherapy. Cytotherapy 2008;10:842-56.
|
22. |
Yannelli JR. The preparation of effector cells for use in the adoptive cellular immunotherapy of human cancer. J Immunol Methods 1991;139:1-16.
|
23. |
Vormittag P, Gunn R, Ghorashian S, Veraitch FS. A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol 2018;53:164-81.
|
24. |
Nankervis B, Jones M, Vang B, Brent Rice R Jr, Coeshott C, Beltzer J. Optimizing T cell expansion in a hollow-fiber bioreactor. Curr Stem Cell Rep 2018;4:46-51.
|
25. |
Coeshott C, Vang B, Jones M, Nankervis B. Large-scale expansion and characterization of CD3+T-cells in the Quantum® Cell Expansion System. J Transl Med 2019;17:258.
|
26. |
Brizova H, Kalinova M, Krskova L, Mrhalova M, Kodet R. A novel quantitative PCR of proliferation markers (Ki-67, topoisomerase IIalpha, and TPX2): An immunohistochemical correlation, testing, and optimizing for mantle cell lymphoma. Virchows Arch 2010;456:671-9.
|
27. |
Sinn HP, Schneeweiss A, Keller M, Schlombs K, Laible M, Seitz J, et al. Comparison of immunohistochemistry with PCR for assessment of ER, PR, and Ki-67 and prediction of pathological complete response in breast cancer. BMC Cancer 2017;17:124.
|
28. |
Dudley ME, Rosenberg SA. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 2003;3:666-75.
|
29. |
Kaartinen T, Luostarinen A, Maliniemi P, Keto J, Arvas M, Belt H, et al. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion. Cytotherapy 2017;19:689-702.
|
30. |
Cho JH, Kim HO, Kim KS, Yang DH, Surh CD, Sprent J. Unique features of naive CD8+ T cell activation by IL-2. J Immunol 2013;191:5559-73.
|
31. |
Voisinne G, Nixon BG, Melbinger A, Gasteiger G, Vergassola M, Altan-Bonnet G. T cells integrate local and global cues to discriminate between structurally similar antigens. Cell Rep 2015;11:1208-19.
|