The evaluation of toxicity of carbon nanotubes on the human adipose-derived-stem cells in-vitro

Authors

1 Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran

2 Nanotechnology Consultancy and Development Center, Padova, Italy

3 Central Lab Medical School, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: Carbon nanotubes (CNTs) have a large variety of applications in tissue engineering and biomedical devices. The biocompatibility and cytotoxicity of CNTs have been studied widely, however, up until now; there was uncertainty on how nanosized materials behave in the human body and stem cells. The current study describes the functionalized carbon nanotubes on adipose-derived stem cells (ADSCs) for viability and proliferation purposes in vitro.
Materials and Methods: After chemical modification of the CNTs, the ADSCs were cultured in Dulbecco's Modified Eagle's. Medium (DMEM) having doses of 0.1, 1, 10, 20, 50, and 100 μg/ml of CNTs. On the third and seventh days of the experiment, the cellular viability, proliferation, and stemness were determined, using the MTT, trypan Blue, and flow cytometry assays in variable CNTs dosage.
Results : In doses of 0.1 and 1 μg/ml, the expression of the surface markers were similar to the control groups on day three, but decreased in higher dosages on day seven. The viability of both groups was the same on day three, but in comparison to the control groups, was found to decrease in the higher dosages on day seven.
Conclusion: The effect of CNTs on the viability and proliferation of ADSCs is a function of time and the doses used. Through further investigation by using these particles, we expect that we should be able to increase the viability and proliferation of ADSCs.

Keywords

1. Feynman RP. There's plenty of room at the bottom. Science 1991;254:1300-1.  Back to cited text no. 1
    
2. Siegel RW. Creating nanophase materials. Sci Am 1996;275:74-9.  Back to cited text no. 2
    
3. Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In vitro 2007;21:438-48.  Back to cited text no. 3
[PUBMED]    
4. Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56-8.  Back to cited text no. 4
    
5. Uo M, Tamura K, Sato Y, Yokoyama A, Watari F, Totsuka Y, et al. The cytotoxicity of metal encapsulating carbon nanocapsules. Small 2005;1:816-9.  Back to cited text no. 5
[PUBMED]    
6. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes: The route toward applications. Science 2002;297:787-92.  Back to cited text no. 6
[PUBMED]    
7. Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 2004;7:16-7.  Back to cited text no. 7
    
8. Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F. Carbon nanotubes for biological and biomedical applications. Nanotechnology 2007;18:412001.  Back to cited text no. 8
    
9. Teker K, Sirdeshmukh R, Sivakumar K, Lu S, Wickstrom E, Wang HN, et al. Applications of carbon nanotubes for cancer research. Nano Biotechnology 2005;1:171-82.  Back to cited text no. 9
    
10. Thordarson P, Le Droumaguet B, Velonia K. Well-defined protein - polymer conjugates-synthesis and potential applications. Appl Microbiol Biotechnol 2006;73:243-54.  Back to cited text no. 10
[PUBMED]    
11. Chen X, Lee GS, Zettl A, Bertozzi CR. Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics. Angew Chem Int Ed Engl 2004;43:6111-6.  Back to cited text no. 11
[PUBMED]    
12. Shim M, Kam NW, Chen RJ, Li Y, Dai H. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2002;2:285-8.  Back to cited text no. 12
    
13. Bahr JL, Tour JM. Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 2002;12:1952-8.  Back to cited text no. 13
    
14. Masciangioli T, Zhang WX. Peer Reviewed: Environmental technologies at the nanoscale. Environ Sci Technol 2003;37:102-8.  Back to cited text no. 14
    
15. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 2004;67:87-107.  Back to cited text no. 15
[PUBMED]    
16. Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol lett 2005;155:73-85.  Back to cited text no. 16
[PUBMED]    
17. Chao TI, Xiang S, Chen CS, Chin WC, Nelson A, Wang C, et al. Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun 2009;384:426-30.  Back to cited text no. 17
    
18. Park SY, Namgung S, Kim B, Im J, Kim J, Sun K, et al. Carbon nanotube monolayer patterns for directed growth of mesenchymal stem cells. Adv Mater 2007;19:2530-4.  Back to cited text no. 18
    
19. Lu Y, Chen S. Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev 2004;56:1621-33.  Back to cited text no. 19
    
20. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, et al. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005;39:1378-83.  Back to cited text no. 20
[PUBMED]    
21. Bianco A, Hoebeke J, Godefroy S, Chaloin O, Pantarotto D, Briand JP, et al. Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J Am Chem Soc 2005;127:58-9.  Back to cited text no. 21
[PUBMED]    
22. Mooney E, Dockery P, Greiser U, Murphy M, Barron V. Carbon nanotubes and mesenchymal stem cells: Biocompatibility, proliferation and differentiation. Nano Lett 2008;8:2137-43.  Back to cited text no. 22
    
23. Webster TJ, Waid MC, McKenzie JL, Price RL, Ejiofor JU. Nano-biotechnology: Carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 2003;15:48.  Back to cited text no. 23
    
24. Aoki N, Yokoyama A, Nodasaka Y, Akasaka T, Uo M, Sato Y, et al. Cell culture on a carbon nanotube scaffold. J Biomed Nanotechnol 2005;1:402-5.  Back to cited text no. 24
    
25. Aoki N, Yokoyama A, Nodasaka Y, Akasaka T, Uo M, Sato Y, et al. Strikingly extended morphology of cells grown on carbon nanotubes. Chem Lett 2006;35:508-9.  Back to cited text no. 25
    
26. Cui D, Tian F, Coyer SR, Wang J, Pan B, Gao F, et al. Effects of Antisense-Myc-Conjugated Single-Walled Carbon Nanotubes on HL-60Cells. J Nanosci Nanotechnol 2007;7:4-5.  Back to cited text no. 26
    
27. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004;77:126-34.  Back to cited text no. 27
[PUBMED]    
28. Wang Y, Iqbal Z, Mitra S. Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J Am Chem Soc 2006;128:95-9.  Back to cited text no. 28
[PUBMED]    
29. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008;46:833-40.  Back to cited text no. 29
    
30. Chin SF, Baughman RH, Dalton AB, Dieckmann GR, Draper RK, Mikoryak C, et al. Amphiphilic helical peptide enhances the uptake of single-walled carbon nanotubes by living cells. Exp Biol Med (Maywood) 2007;232:1236-44.  Back to cited text no. 30
[PUBMED]    
31. Zheng B, Li Y, Liu J. CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst. Applied Physics A. Mater Sci Processi 2002;74:345-8.  Back to cited text no. 31
    
32. Zhang D, Yi C, Zhang J, Chen Y, Yao X, Yang M. The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts. Nanotechnology 2007;18:475102.  Back to cited text no. 32
    
33. Chen X, Tam UC, Czlapinski JL, Lee GS, Rabuka D, Zettl A, et al. Interfacing carbon nanotubes with living cells. J Am Chem Soc 2006;128:6292-3.  Back to cited text no. 33
[PUBMED]    
34. Ruelle B, Peeterbroeck S, Gouttebaron R, Godfroid T, Monteverde F, Dauchot JP, et al. Functionalization of carbon nanotubes by atomic nitrogen formed in a microwave plasma Ar+N2 and subsequent poly (ε-caprolactone) grafting. J Mater Chem 2007;17:157-9.  Back to cited text no. 34
    
35. Zhao C, Ji L, Liu H, Hu G, Zhang S, Yang M, et al. Functionalized carbon nanotubes containing isocyanate groups. J Solid State Chem 2004;177:4394-8.  Back to cited text no. 35
    
36. Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phy Chem B 2003;107:3712-8.  Back to cited text no. 36
    
37. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006;160:121-6.  Back to cited text no. 37
[PUBMED]    
38. Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol in vitro 2006;20:1202-12.  Back to cited text no. 38
[PUBMED]    
39. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett 2006;6:1121-5.  Back to cited text no. 39
[PUBMED]    
40. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007;168:121-31.  Back to cited text no. 40