The Role of Vasodilator Receptors of Renin–angiotensin System on Nitric Oxide Formation and Kidney Circulation after Angiotensin II Infusion in Renal Ischemia/Reperfusion Rats


Water and Electrolytes Research Center/Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran


Background: Nitric oxide (NO) as a vasodilator factor has renoprotective effect against renal ischemia. The balance between angiotensin II (Ang II) and NO can affect kidney homeostasis. The aim of this study was to determine NO alteration in response to renin–Ang system vasodilator receptors antagonists (PD123319; Ang II type 2 receptor antagonist and A779; Mas receptor antagonist) in renal ischemia/reperfusion injury (IRI) in rats. Materials and Methods: Sixty-three Wistar male and female rats were used. Animals from each gender were divided into four groups received saline, Ang II, PD123319 + Ang II, and A779 + Ang II after renal IRI. Renal IRI induced with an adjustable hook. Blood pressure and renal blood flow (RBF) measured continuously. The nitrite levels were measured in serum, kidney, and urine samples. Results: In female rats, the serum and kidney nitrite levels increased significantly by Ang II (P < 0.05) and decreased significantly (P < 0.05) when PD123319 was accompanied with Ang II. Such observation was not seen in male. Ang II decreased RBF significantly in all groups (P < 0.05), while PD + Ang II group showed significant decrease in RBF in comparison with the other groups in female rats (P < 0.05). Conclusion: Males show more sensibility to Ang II infusion; in fact, it is suggested that there is gender dimorphism in the Ang II and NO production associated with vasodilator receptors.


Phillips L, Toledo AH, Lopez-Neblina F, Anaya-Prado R, Toledo-Pereyra LH. Nitric oxide mechanism of protection in ischemia and reperfusion injury. J Invest Surg 2009;22:46-55.  Back to cited text no. 1
Ebrahimzadeh M, Nabavi S, Nabavi S, Pourmorad F. Nitric oxide radical scavenging potential of some Elburz medicinal plants. Afr J Biotechnol 2013;9:5212-7.  Back to cited text no. 2
Finlay S, Jones MC. Acute kidney injury. Medicine 2013;41:182-5.  Back to cited text no. 3
Viñas JL, Sola A, Genescà M, Alfaro V, Pí F, Hotter G. NO and NOS isoforms in the development of apoptosis in renal ischemia/reperfusion. Free Radic Biol Med 2006;40:992-1003.  Back to cited text no. 4
Jung KH, Chu K, Ko SY, Lee ST, Sinn DI, Park DK, et al. Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke 2006;37:2744-50.  Back to cited text no. 5
Tripatara P, Patel NS, Webb A, Rathod K, Lecomte FM, Mazzon E, et al. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: Role for xanthine oxidoreductase. J Am Soc Nephrol 2007;18:570-80.  Back to cited text no. 6
de Gasparo M. Angiotensin II and nitric oxide interaction. The Role of Nitric Oxide in Heart FailureSpringer (USA); 2004. p. 137-48.  Back to cited text no. 7
Zhou MS, Adam A, Raij L. Review: Interaction among angiotensin II, nitric oxide and oxidative stress. J Renin Angiotensin Aldosterone Syst 2001;2 1 Suppl:S59-63.  Back to cited text no. 8
Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci U S A 1988;85:4095-8.  Back to cited text no. 9
Heitsch H, Brovkovych S, Malinski T, Wiemer G. Angiotensin-(1-7)-stimulated nitric oxide and superoxide release from endothelial cells. Hypertension 2001;37:72-6.  Back to cited text no. 10
Siragy HM, Carey RM. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 1997;100:264-9.  Back to cited text no. 11
Palm F, Connors SG, Mendonca M, Welch WJ, Wilcox CS. Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats. Hypertension 2008;51:345-51.  Back to cited text no. 12
Santos RA, Ferreira AJ, Pinheiro SV, Sampaio WO, Touyz R, Campagnole-Santos MJ. Angiotensin-(1-7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin Investig Drugs 2005;14:1019-31.  Back to cited text no. 13
Oudit GY, Herzenberg AM, Kassiri Z, Wong D, Reich H, Khokha R, et al. Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol 2006;168:1808-20.  Back to cited text no. 14
Raij L. Workshop: Hypertension and cardiovascular risk factors: Role of the angiotensin II-nitric oxide interaction. Hypertension 2001;37(2 Pt 2):767-73.  Back to cited text no. 15
Müller V, Losonczy G, Heemann U, Vannay A, Fekete A, Reusz G, et al. Sexual dimorphism in renal ischemia-reperfusion injury in rats: Possible role of endothelin. Kidney Int 2002;62:1364-71.  Back to cited text no. 16
Fekete A, Vannay A, Vér A, Rusai K, Müller V, Reusz G, et al. Sex differences in heat shock protein 72 expression and localization in rats following renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2006;291:F806-11.  Back to cited text no. 17
Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic renal disease: A meta-analysis. J Am Soc Nephrol 2000;11:319-29.  Back to cited text no. 18
Silbiger SR, Neugarten J. The impact of gender on the progression of chronic renal disease. Am J Kidney Dis 1995;25:515-33.  Back to cited text no. 19
Valdivielso JM, Crespo C, Alonso JR, Martínez-Salgado C, Eleno N, Arévalo M, et al. Renal ischemia in the rat stimulates glomerular nitric oxide synthesis. Am J Physiol Regul Integr Comp Physiol 2001;280:R771-9.  Back to cited text no. 20
Silva-Antonialli MM, Tostes RC, Fernandes L, Fior-Chadi DR, Akamine EH, Carvalho MH, et al. A lower ratio of AT1/AT2 receptors of angiotensin II is found in female than in male spontaneously hypertensive rats. Cardiovasc Res 2004;62:587-93.  Back to cited text no. 21
Forte P, Kneale BJ, Milne E, Chowienczyk PJ, Johnston A, Benjamin N, et al. Evidence for a difference in nitric oxide biosynthesis between healthy women and men. Hypertension 1998;32:730-4.  Back to cited text no. 22
Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension 2001;37:1199-208.  Back to cited text no. 23
Neugarten J, Ding Q, Friedman A, Lei J, Silbiger S. Sex hormones and renal nitric oxide synthases. J Am Soc Nephrol 1997;8:1240-6.  Back to cited text no. 24
Orshal JM, Khalil RA. Gender, sex hormones, and vascular tone. Am J Physiol Regul Integr Comp Physiol 2004;286:R233-49.  Back to cited text no. 25
Baylis C. Changes in renal hemodynamics and structure in the aging kidney; sexual dimorphism and the nitric oxide system. Exp Gerontol 2005;40:271-8.  Back to cited text no. 26
Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: Novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2007;112:417-28.  Back to cited text no. 27
Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 2000;101:594-7.  Back to cited text no. 28
Mancini GB, Henry GC, Macaya C, O'Neill BJ, Pucillo AL, Carere RG, et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study. Circulation 1996;94:258-65.  Back to cited text no. 29
Prasad A, Tupas-Habib T, Schenke WH, Mincemoyer R, Panza JA, Waclawin MA, et al. Acute and chronic angiotensin-1 receptor antagonism reverses endothelial dysfunction in atherosclerosis. Circulation 2000;101:2349-54.  Back to cited text no. 30
Hennington BS, Zhang H, Miller MT, Granger JP, Reckelhoff JF. Angiotensin II stimulates synthesis of endothelial nitric oxide synthase. Hypertension 1998;31(1 Pt 2):283-8.  Back to cited text no. 31
Sampson AK, Moritz KM, Jones ES, Flower RL, Widdop RE, Denton KM. Enhanced angiotensin II type 2 receptor mechanisms mediate decreases in arterial pressure attributable to chronic low-dose angiotensin II in female rats. Hypertension 2008;52:666-71.  Back to cited text no. 32
Sampson AK, Moritz KM, Denton KM. Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats. Gend Med 2012;9:21-32.  Back to cited text no. 33
Hilliard LM, Sampson AK, Brown RD, Denton KM. The “his and hers” of the renin-angiotensin system. Curr Hypertens Rep 2013;15:71-9.  Back to cited text no. 34
Dilauro M, Burns KD. Angiotensin-(1-7) and its effects in the kidney. ScientificWorldJournal 2009;9:522-35.  Back to cited text no. 35
Safari T, Nematbakhsh M, Hilliard LM, Evans RG, Denton KM. Sex differences in the renal vascular response to angiotensin II involves the Mas receptor. Acta Physiol (Oxf) 2012;206:150-6.  Back to cited text no. 36