Authors
1 Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Pharmacognosy, School of Pharmacy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract
Background: Periodontitis is inflammation of the supporting tissues of the teeth caused by specific microorganisms. Intra-periodontal pocket, mucoadhesive drug delivery systems have been shown to be clinically effective in the treatment of periodontitis. The aim of this study was to formulate a mucoadhesive gel from the seed hull of Quercus brantii and fruits of Coriandrum sativum for the treatment of periodontitis.
Materials and Methods: The semisolid concentrated extracts were incorporated in gel base. Mucoadhesive gels were prepared using carbopol 940‚ sodium carboxymethylcellulose (sodium CMC) and hydroxypropyl methylcellulose K4M (HPMC) as bioadhesive polymers. Physicochemical tests‚ mucoadhesive strength measurement and in vitro drug release study were carried out on two formulations containing carbopol 940 and sodium CMC polymers (Formulations F 4 and F 5 ). We investigated the antibacterial activity of formulation F 5 against Porphyromonas gingivalis using the disk diffusion method on supplemented Brucella agar.
Results: Eight gel formulations were prepared. Physical appearance, homogeneity and consistency of F 4 and F 5 were good. Mucoadhesion and viscosity of F 5 (1% carbopol 940 and 3% sodium CMC) was more than F 4 (0.5% carbopol 940 and 3% sodium CMC). Drug release from F 5 was slower. Both of formulations were syringeable through 21 G needle. In the disk diffusion method, F 5 produced significant growth inhibition zones against P. gingivalis.
Conclusion: The ideal formulation for the treatment of periodontitis should exhibit high value of mucoadhesion, show controlled release of drug and be easily delivered into the periodontal pocket preferably using a syringe. Based on in vitro release and mucoadhesion studies‚ F 5 was selected as the best formulation.
Keywords
1. | Newman MG‚ Takei HH‚ Klokkevold PR‚ Carranza FA. Carranza's clinical periodontology. 10th ed. Philadelphia: Saunders; 2006. p. 103-5‚ 137‚ 143‚ 150-7‚ 174‚ 241-69, 434-5. |
2. | Mundinamane DB, Suchetha A, Venkataraghavan K. Newer trends in local drug delivery for periodontal problems - A preview. IJCD 2011;2:59-62. |
3. | Petti S‚ Scully C. Polyphenols‚ oral health and disease: A review. J Dent 2009;37:413-23. |
4. | Pragati S, Ashok S, Kuldeep S. Recent advances in periodontal drug delivery systems. IJDD 2009;1:1-14. |
5. | Nair SC, Anoop KR. Intraperiodontal pocket: An ideal route for local antimicrobial drug. J Adv Pharm Technol Res 2012;3:9-15. |
6. | Dwarakanadha Reddy P, Satyanarayana T, Swarnalatha D, Purushothaman M. Local drug delivery of herbs for treatment of periodontitis. JITPS 2010;1:245-51. |
7. | Khosravi A, Behzadi A. Evaluation of the antibacterial activity of the seed hull of Quercus brantii on some gram negative bacteria. Pak J Med Sci 2006;22:429-32. |
8. | Jeffers MD. Tannins as anti-inflammatory agents. PhD Thesis Miami University, Oxford, Ohio; 2006. p. 79. |
9. | Evans CE‚ Banso A‚ Samuel OA. Efficacy of some nupe medicinal plants against Salmonella typhi: An in vitro study. J Ethnopharmacol 2002;80:21-4. |
10. | Umachigi SP‚ Jayaveera KN‚ Ashok Kumar CK‚ Kumar GS‚ Vrushabendra Swamy BM‚ Kishore Kumar DV. Studies on wound healing properties of Quercus infectoria. Trop J Pharm Res 2008;7:913-9. |
11. | Aslani A‚ Emami SM‚ Ghannadi A‚ Ajdari M. Formulation and physicochemical evaluation of an herbal antihemorrhoid ointment from Quercus‚ Black cumin and Fenugreek for the treatment of internal anal hemorrhoids. J Pharm Sci Tabriz Univ Med Sci 2009;14:247-57. |
12. | Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: Antioxidants and beyond. Am J Clin Nutr 2005;81:2155-75. |
13. | Huber R‚ Ditfurth AV‚ Amann F‚ Guthlin C‚ Rostock M‚ Trittler R‚ et al. Tormentil for active ulcerative colitis: An open label‚ dose-escalating study. J Clin Gastroenterol 2007;41:834-8. |
14. | Zargari A. Medicinal plants. Vol. 4. Tehran: Tehran University Publications; 1990. p. 480. |
15. | Sabeti A. Forests, trees, and shrubs of Iran. Yazd: Yazd University Publications; 1994. p. 576. |
16. | Rivas-Arreola MJ‚ Rocha-Guzman NE‚ Gallegos-Infante JA‚ Gonzalez-Laredo RF‚ Rosales-Castro M‚ Bacon JR‚ et al. Antioxidant activity of Oak (Quercus) leaves infusions against free radicals and their cardioprotective potential. Pak J Biol Sci 2010;13:537-45. |
17. | Safary A‚ Motamedi H‚ Maleki S‚ Seyyed Nejad SM. A preliminary study on the antibacterial activity of Quercus brantii against bacterial pathogens‚ particularly enteric pathogens. Int J Bot 2009;5:176-80. |
18. | Mokhtari M, Khabbaz Z. Evaluation of anti-nociceptive and anti-inflammatory effects of hydroalcoholic extract of leaves of oak, Quercus brantii by formalin test and carrageenan model in rat. Nat Env Poll Tech 2010;9:371-8. |
19. | Ghaderi M, Sadeghi Mahoonak A, Aalami M, Khomeiri M, Rezaei R. Evaluation of antiradical and antimicrobial activity of methanolic extract of two acorn varieties and detection of phenolic compound with high performance liquid chromatography. IFSTRJ 2011;7:180-90. |
20. | Ghannadi A‚ Sadeh D. Volatile constituents of the fruits of Coriander from Isfahan. DARU J Pharm Sci 1999;7:12-4. |
21. | Haj Hashemi VA‚ Ghannadi A‚ Sharif B. Anti inflammatory and analgesic effects of Coriandrum sativum L. in animal models. J Shahrekord Univ Med Sci 2003;5:8-15. |
22. | Karmakar UK, Rahman MA, Roy DN, Saddhu SK, Ali ME. Chemical and biological investigations of Coriandrum sativum L. IJPSR 2011;2:999-1006. |
23. | Chanwitheesuk A‚ Teerawufgulrag A‚ Rakariyatham N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem 2005;92:491-7. |
24. | Bansal K‚ Rawat MK‚ Jain A‚ Rajput A‚ Chaturvedi TP‚ Singh S. Development of satranidazole mucoadhesive gel for the treatment of periodontitis. AAPS PharmSciTech 2009;10:716-23. |
25. | Paulsson M. Controlled release gel formulations for mucosal drug delivery. Acta Universitatis Upsaliensis, Uppsala. 2001. p. 4, 10. |
26. | Jelvehgari M‚ Rashidi MR‚ Samadi H. Mucoadhesive and drug release properties of benzocaine gel. IJPS 2006;2:185-94. |
27. | Waterhouse AL. Determination of total phenolics, Unit I 1.1. Current protocols in food analytical chemistry. New York: John Wiley and Sons; 2002. p. 1-8. |
28. | Pithayanukul P‚ Nithitanakool S‚ Bavovada R. Hepatoprotective potential of extracts from seeds of Areca catechu and Nutgalls of Quercus infectoria. Molecules 2009;14:4987-5000. |
29. | Troy DB. Remington: The Science and Practice of Pharmacy. Philadelphia: Lippincott Williams and Wilkins, 2005. p. 772. |
30. | Kumar RV‚ Kumar S. Formulation and evaluation of Mimosa pudica gel. Int J Pharm Pharm Sci 2011;3:55-7. |
31. | Attia DA. In-vitro and in-vivo evaluation of transdermal absorption of naproxen sodium. Aust J Basic Appl Sci 2009;3:2144-65. |
32. | Saleem MA, Bala S, Liyakat, Aeajaz A. Effect of different carriers on in vitro permeation of meloxicam through rats skin. Indian J Pharm Sci 2010;72:710-8. [PUBMED] |
33. | Rawat S‚ Warade S‚ Lahoti S. In situ formulation of ornidazole for the treatment of periodontal disease. Curr Pharma Res 2010;1:60-9. |
34. | Varshosaz J‚ Dehghan Z. Development and characterization of buccoadhesive nifedipine tablets. Eur J Pharm Biopharm 2002;54:135-41. |
35. | Aslani A, Shahmoradi Z, Abtahi Fahliyany F. Preparation and clinical evaluation of skin lightening cream contain arbutin, kojic dipalmitate, licorice extract and ascorbyl palmitate. Dissertation for the degree of doctor of pharmacy. Isfahan University of Medical Sciences; 2010. p. 38-9. |
36. | Schwach-Abdellaoui K‚ Vivien-Castioni N‚ Gurny R. Local delivery of antimicrobial agents for the treatment of periodontal diseases. Eur J Pharm Biopharm 2000;50:83-99. |
37. | Saderi H, Owlia P, Hosseini A, Semiyari H. Antimicrobial effects of chamomile extract and essential oil on clinically isolated Porphyromonas gingivalis from periodontitis. Acta Hort 2005;6:145-6. |
38. | Poureslami HR, Makarem A, Mojab F. Paraclinical effect of Miswak extract on dental plaque. Dent Res J 2007;4:106-10. |
39. | Basri DF, Tan LS, Shafiei Z, Zin NM. In Vitro antibacterial activity of galls of Quercus infectoria Olivier against oral pathogens. Evid Based Complement Alternat Med 2012;2012:632796. |
40. | Bukka R, Prakasam K, Patel CD. Preparation and evaluation of intraoral drug delivery system for rasagiline mesylate. IJPSDR 2010;2:294-301. |
41. | Blanco-Fuente H, Esteban-Fernandez B, Blanco-Mendez J, Otero-Espinar FJ. Use of â-cyclodextrins to prevent modifications of the properties of carbopol hydrogels due to carbopol-drug interactions. Chem Pharm Bull (Tokyo) 2002;50:40-6. |
42. | Yang JH, Yun MY, Kim DK, Kim MJ, Kim YH, Kim TY, et al. Preparation and evaluation of ketorolac tromethamine gel containing genipin for periodontal diseases. Arch Pharm Res 2007;30:871-5. |
43. | Jones DS, Woolfson AD, Brown AF, Coulter WA, McCelland C, Irwin CR. Design, characterization and preliminary clinical evaluation of a novel mucoadhesive topical formulation containing tetracycline for the treatment of periodontal disease. J Control Release 2000;67:357-68. |