Recent advances in the field of antimicrobial peptides in inflammatory diseases

Author

Department of Immunology, National School of Biological Sciences, National Polytechnic Institute, Mexico, D.F., Mexico

Abstract

Antimicrobial peptides are cationic molecules, which participate in multiple aspects of the immune response
including the control of inflammatory diseases, characteristic that make these molecules attractive as
therapeutic tools. These peptides are produced in bacteria, insects, plants and vertebrates, and are classified
together due to their capacity to directly inhibit the growth of microorganisms, and to regulate the immune
response by inducing the secretion of chemokines and cytokines. Various families of antimicrobial peptides
have been identified including the cathelicidins and defensins, the most investigated human antimicrobial
peptides. This review will cover the main biological functions of antimicrobial and cell-penetrating peptides
in inflammation, and describe the importance and utility of antimicrobial peptides as therapeutics for
inflammatory diseases. 

Keywords

1. Fjell CD, Hancock RE, Cherkasov A. AMPer: Adatabase and an automated
discovery tool for antimicrobial peptides. Bioinformatics 2007;23:1148-55.
2. Wang G, Li X, Wang Z. APD2: The updated antimicrobial peptide database
and its application in peptide design. Nucleic Acids Res 2009;37:D933-7.
3. Boman HG. Antimicrobial peptides: Basic facts and emerging concepts.
J Intern Med 2003;254:197-215.
4. van’t Hof W, Veerman E, Helmerhorst E, Amerongen AV. Antimicrobial
peptides: Properties and applicability. Biol Chem 2001;382:597-619.
5. McDermott AM. Defensins and other antimicrobial peptides at the ocular
surface. Ocul Surf 2004;2:229-47.
6. Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity.
J Leukoc Biol 2004;75:39-48.
7. Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat Rev
Immunol 2003;3:710-20.
8. Lehrer RI. Primate defensins. Nat Rev Microbiol 2004;2:727-38.
9. Bals R. Epithelial peptides in host defense against infection. Respir Res
2000;1:141-50.
10. Eckmann L. Defence molecules in intestinal innate immunity against
bacterial infections. Curr Opin Gastroenterol 2005;21:147-51.
11. Zanetti M, Gennaro R, Romeo D. Cathelicidins: A novel protein family with
a common proregion and a variable C-terminal antimicrobial domain. FEBS
Lett 1995;374:1-5.
12. Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y. Structure
and organization of the human antimicrobial peptide LL-37 in phospholipid
membranes: Relevance to the molecular basis for its non-cell-selective
activity. Biochem J 1999;341:501-13.
13. Agerberth B, Gunne H, Odeberg J, Kogner P, Boman H, Gudmundsson G.
FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed
in bone marrow and testis. Proc Natl Acad Sci U S A 1995;92:195-9.
14. De Smet K, Contreras R. Human antimicrobial peptides: Defensins,
cathelicidins and histatins. Biotechnol Lett 2005;27:1337-47.
15. Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC. Human CAP18:
A novel antimicrobial lipopolysaccharide-binding protein. Infect Immun
1995;63:1291-7.
16. Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B,
Salcedo R. The human gene FALL-39 and processing of the cathelin
precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem
1996;238:325-32.
17. Cowland JB, Johnsen AH, Borregaad N. hCAP-18, a cathelin/probactenecinlike protein of human neutrophil specific granules. FEBS Lett 1995;368:173-6.
18. Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18
is expressed in epithelia of the human lung where it has broad antimicrobial
activity at the airway surface. Proc Natl Acad Sci U S A 1998;95:9541-6.
19. Frohm M, Agerberth B, Ahangari G, Stâhle-Bäckdahl M, Lidén S, Wigzell H,et al. The expression of the gene coding for the antimicrobial peptide LL-37
is induced in human keratinocytes during inflammatory disorders. J Biol
Chem 1997;272:15258-63.
20. Nilsson MF, Sandstedt B, Sorensen O, Weber G, Borregaard N, StåhleBäckdahl M. The human cationic antimicrobial protein (hCAP18), a peptide
antibiotic, is widely expressed in human squamous epithelia and colocalizes
with interleukin-6. Infect Immun 1999;67:2561-6.
21. Durr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human member
of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta
2006;1758:1408-25.
22. Schaller-Bals S, Schulze A, Bals R. Increased levels of antimicrobial
peptides in tracheal aspirates of newborn infants during infection. Am J
Respir Crit Care Med 2002;165:992-5.
23. Malm J, Sorensen O, Persson T, Frohm-Nilsson M, Johansson B, Bjartell A,
et al. The human cationic antimicrobial protein (hCAP-18) is expressed
in the epithelium of human epididymis, is present in seminal plasma
at high concentrations, and is attached to spermatozoa. Infect Immun
2000;68:4297-302.
24. Méndez-Samperio P. The human cathelicidin hCAP18/LL-37:
A multifunctional peptide involved in mycobacterial infections. Peptides
2010;31:1791-8.
25. Yang CS, Shin DM, Kim KM, Lee ZW, Lee CH, Park SG, et al. NADPH
oxidase 2 interaction with TLR2 is required for efficient innate immune
responses to mycobacteria via cathelicidin expression. J Immunol
2009;182:3696-705.
26. Hoover DM, Rajashankar KR, Blumenthal R, Puri A, Oppenheim JJ,
Chertov O, et al. The structure of human beta-defensin-2 shows evidence
of higher order oligomerization. J Biol Chem 2000;275:32911-8.
27. Lehrer R, Lichtenstein A, Ganz T. Defensins: Antimicrobial and cytotoxic
peptides of mammalian cells. Annu Rev Immunol 1993;11:105-28.
28. Ganz T, Lehrer RI. Defensins. Pharmacol Ther 1995;66:191-205.
29. García JR, Krause A, Schulz S, Rodríguez-Jiménez FJ, Klüver E,
Adermann K, et al. Human b-defensin 4: A novel inducible peptide with
a specific salt-sensitive spectrum of antimicrobial activity. FASEB J
2001;10:1819-21.
30. Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zassloff M. Human
b-defensin-1 is a salt-sensitive antibiotic in the lung that is inactivated in
cystic fibrosis. Cell 1997;88:553-60.
31. Rodriguez-Jimenez FJ, Krause A, Schulz S, Forssmann WG, ConejoGarcia JR, Schreeb R, et al. Distribution of new human beta-defensin
genes clustered on chromosome 20 in functionally different segments of
epididymis. Genomics 2003;81:175-83.
32. Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ,
et al. Discovery of five conserved beta-defensin gene clusters using a
computational search strategy. Proc Natl Acad Sci U S A 2002;99:2129-33.
33. Schutte BC, McCray PB. Beta-defensins in lung host defense. Annu Rev
Physiol 2002;64:709-48.
34. Sparkes RS, Kronenberg M, Heinzmann C, Daher KA, Klisak I, Ganz T, et al.
Assignment of defensin gene(s) to human chromosome 8p23. Genomics
1989;5:240-4.
35. Linzmeier R, Michaelson D, Liu L, Ganz T. The structure of neutrophil
defensin genes. FEBS Lett 1993;321:267-73.
36. Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL. Tracheal
antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal
mucosa:peptide isolation and cloning of a cDNA. Proc Natl Acad Sci U S
A 1991;88:3952-6.
37. Bensch K, Raida M, Magert HJ, Schulz-Knappe P, Forssmann WG. HBD-1:
A novel b-defensin from human plasma. FEBS Lett 1995;368:331-5.
38. Harder J, Bartels J, Christophers E, Schröder JM. A peptide antibiotic from
human skin. Nature 1997;387:861.
39. Schröder JM, Harder J. Human beta-defensin-2. Int J Biochem Cell Biol
1999;31:645-51.
40. Méndez-Samperio P, Miranda E, Trejo A. Mycobacterium bovis Bacillus
Calmette-Guérin (BCG) stimulates human beta-defensin-2 gene
transcription in human epithelial cells. Cell Immunol 2006;239:61-6.
41. Harder J, Bartels J, Christophers E, Schröder JM. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide
antibiotic. J Biol Chem 2001;276:5707-13.
42. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Multiple roles
of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin
in host defense. Annu Rev Immunol 2004;22:181-215.
43. Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC,
et al. The cationic antimicrobial peptide LL-37 Modulates dendritic cell
differentiation and dendritic cell induced T cell polarization. J Immunol
2004;172:1146-56.
44. Braff MH, Hawkins MA, Di Nardo A, Lopez-Garcia B, Howell MD, Wong C,
et al. Structure–function relationships among human cathelicidin peptides:
Dissociation of antimicrobial properties from host immunostimulatory
activities. J Immunol 2005;174:4271-8.
45. Agerberth B, Gudmundsson GH. Host antimicrobial defence peptides in
human disease. Curr Top Microbiol Immunol 2006;306:67-90.
46. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human
antimicrobial peptide LL-37 is a multifunctional modulator of innate immune
responses. J Immunol 2002;169:3883-91.
47. Bowdish DM, Davidson DJ, Hancock RE. A re-evaluation of the role of
host defence peptides in mammalian immunity. Curr Protein Pept Sci
2005;6:35-51.
48. Hase K, Murakami M, Iimura M, Cole SP, Horibe Y, Ohtake T, et al.
Expression of LL-37 by human gastric epithelial cells as a potential
host defense mechanism against Helicobacter pylori. Gastroenterology
2003;125:1613-25.
49. Woo JS, Jeong JY, Hwang YJ, Chae SW, Hwang SJ, Lee HM. Expression
of cathelicidin in human salivary glands. Arch Otolaryngol Head Neck Surg
2003;129:211-4.
50. Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H,
et al. A cathelicidin family of human antibacterial peptide LL-37 induces
mast cell chemotaxis. Immunology 2002;106:20-6.
51. Niyonsaba F, Ogawa H. Protective roles of the skin against infection:
Implication of naturally occurring human antimicrobial agents betadefensins, cathelicidin LL-37 and lysozyme. J Dermatol Sci 2005;40:157-68.
52. Soehnlein O, Zernecke A, Eriksson E, Rothfuchs AG, Pham CT, Herwald H,
et al. Neutrophil secretion products pave the way for inflammatory
monocytes. Blood 2008;112:1461-71.
53. Chaly YV, Paleolog EM, Kolesnikova TS, Tikhonov I, Petratchenko EV,
Voitenok N. Neutrophil alpha-defensin human neutrophil peptide modulates
cytokine production in human monocytes and adhesion molecule expression
in endothelial cells. Eur Cytokine Netw 2000;11:257-66.
54. Braff MH, Bardan A, Nizet V, Gallo RL. Cutaneous defense mechanisms
by antimicrobial peptides. J Invest Dermatol 2005;125:9-13.
55. Syeda F, Tullis E, Slutsky AS, Zhang H. Human neutrophil peptides
upregulate expression of COX-2 and endothelin-1 by inducing oxidative
stress. Am J Physiol Heart Circ Physiol 2008;294:H2769-74.
56. Schmid P, Grenet O, Medina J, Chibout SD, Osborne C, Cox DA. An
intrinsic antibiotic mechanismin wounds and tissue-engineered skin. J Invest
Dermatol 2001;116:471-2.
57. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al.
Beta-defensins: Linking innate and adaptive immunity through dendritic
and T cell CCR6. Science 1999;286:525-8.
58. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K,
et al. Antimicrobial peptides human beta-defensins stimulate epidermal
keratinocyte migration, proliferation and production of proinflammatory
cytokines and chemokines. J Invest Dermatol 2007;127:594-604.
59. Nagaoka I, Niyonsaba F, Tsutsumi-Ishii Y, Tamura H, Hirata M. Evaluation
of the effect of human beta-defensins on neutrophil apoptosis. Int Immunol
2006;20:543-53.
60. Baroni A, Donnarumma G, Paoletti I, Longanesi-Cattani I, Bifulco K,
TufanoMA, et al. Antimicrobial human beta defensin-2 stimulates migration,
proliferation and tube formation of human umbilical vein endothelial cells.
Peptides 2009;30:267-72.
61. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al.
Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial
peptide. Nature 2007;449:564-9.62. Lai Y, Gallo RL. AMPed up immunity: How antimicrobial peptides have
multiple roles in immune defense. Trends Immunol 2009;30:131-41.
63. Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D,
et al. Psoriasis is associated with increased beta-defensin genomic copy
number. Nat Genet 2008;40:23-5.
64. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A,
et al. Increased serine protease activity and cathelicidin promotes skin
inflammation in rosácea. Nat Med 2007;13:975-80.
65. Di Nardo A, Braff MH, Taylor KR, Na C, Granstein RD, McInturff JE, et al.
Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and
allergic contact sensitization. J Immunol 2007;178:1829-34.
66. Marta Guarna M, Coulson R, Rubinchik E. Anti-inflammatory activity of
cationic peptides: Application to the treatment of acne vulguris. FEMS
Microbiol Lett 2006;257:1-6.
67. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T,
et al. Endogenous antimicrobial peptides and skin infections in atopic
dermatitis. N Engl J Med 2002;347:1151-60.
68. Fellermann K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J,
Bevins CL, et al. A chromosome 8 gene-cluster polymorphism with low
human beta-defensin 2 gene copy number predisposes to Crohn disease
of the colon. Am J Hum Genet 2006;79:439-48.
69. Wehkamp J, Harder J, Weichenthal M, Mueller O, Herrlinger KR,
Fellermann K, et al. Inducible and constitutive beta-defensins are
differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm
Bowel Dis 2003;9:215-23.
70. Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML. BetaDefensin-3 and -4 in intestinal epithelial cells display increased mRNA
expression in ulcerative colitis. Clin Exp Immunol 2004;137:379-85.
71. Wehkamp J, Wang G, Kubler I, Nuding S, Gregorieff A, Schnabel A,
et al. The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is
linked to Wnt ⁄ Tcf-4. J Immunol 2007;179:3109-18.
72. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, et al.
Innate antimicrobial peptide protects the skin from invasive bacterial
infection. Nature 2001;414:454-7.
73. Dorschner RA, Lin KH, Murakami M, Gallo RL. Neonatal skin in mice
and humans expresses increased levels of antimicrobial peptides: Innate
immunity during development of the adaptive response. Pediatr Res
2003;53:566-72.
74. Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL.
Cathelicidin nti-microbial peptide expression in sweat, an innate defense
system for the skin. J Invest Dermatol 2002;119:1090-5.75. Sayama K, Komatsuzawa H, Yamasaki K, Shirakata Y, Hanakawa Y,
Ouhara K, et al. New mechanisms of skin innate immunity: ASK1-mediated
keratinocyte differentiation regulates the expression of beta-defensins,
LL37, and TLR2. Eur J Immunol 2005;35:1886-95.
76. Miles K, Clarke DJ, Lu W, Sibinska Z, Beaumont PE, Davidson DJ,
et al. Dying and necrotic neutrophils are anti-inflammatory secondary to the
release of alpha-defensins. J Immunol 2009;183:2122-32.
77. Ryan L, Diamond G. Mouse beta-defensin-1 plays a role in influenza innate
immunity. J Immunol 2010;184:37-49.
78. Sharma KR, Reddy PR, Tegge W, Jain R. Discovery of Trp-His and His-Arg
analogues as new structural classes of short antimicrobial peptides. J Med
Chem 2009;52:7421-31.
79. Rodziewicz-Motowidlo S, Mickiewicz B, Greber K, Sikorska E,
Szultka L, Kamysz E, et al. Antimicrobial and conformational studies of
the active and inactive analogues of the protegrin-1 peptide. FEBS J
2010;277:1010-22.
80. Saviello RM, Malfi S, Campiglia P, Cavalli A, Grieco P, Novellino E, et al.
A New insight into the mechanism of action of the temporin antimicrobial
peptides. Biochemistry 2010;49:1477-85.
81. Hata TR, Kotol P, Jackson M, Nguyen M, Paik A, Udall D, et al. Administration
of oral vitamin D induces cathelicidin production in atopic individuals.
J Allergy Clin Immunol 2008;122:829-31.
82. Segaert S. Vitamin D regulation of cathelicidin in the skin: Toward
a renaissance of vitamin D in dermatology? J Invest Dermatol
2008;128:773-5.
83. Schwab M, Reynders V, Shastri Y, Loitsch S, Stein J, Schröder O. Role
of nuclear hormone receptors in butyrate-mediated up-regulation of the
antimicrobial peptide cathelicidin in epithelial colorectal cells. Mol Immunol
2007;44:2107-14.
84. Jacobsen F, Mittler D, Hirsch T, Gerhards A, Lehnhardt M, Voss B, et al.
Transient cutaneous adenoviral gene therapy with human host defense
peptide hCAP-18/LL-37 is effective for the treatment of burn wound
Infections. Gene Ther 2005;12:1494-502.
85. Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S. Host defense
peptides and their antimicrobial-immunomodulatory duality. Immunobiology
2011;216:322-33.
86. Yeung AT, Gellatly SL, Hancock RE. Multifunctional cationic host defence
peptides and their clinical applications. Cell Mol Life Sci 2011;68:2161-76.