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Background: Studies have shown that Doxepin has anti-inflammatory effects and reduces oxidative stress. 
Due to the fact that other tricyclic antidepressants have been shown to have neuroprotective effects, this 
study aimed to investigate the effects of different doses of doxepin on passive avoidance learning in rats.
Materials and Methods: Old male Wistar rats were used in this study. Doxepin was administered 
intraperitoneally (1, 5 and 10 mg/kg) for 21 days. Passive avoidance learning test was used for evaluation 
of learning and memory. Rats received foot electrical shock on fifteen day, and step through latencies were 
evaluated one week after the electrical shock in retention phase.
Results: Administration of Doxepin considerably increased the step through latencies in the rats that received 
the doses of 1 and 5 mg/kg (P < 0.05). However, in the dose of 10 mg/kg, there wasn’t any significant change 
comparing to control group.
Conclusion: These results indicate that Doxepin has desirable effects on cognitive functions in low doses. 
Therefore, Doxepin can be considered as memory enhancers that understanding the underling mechanisms 
need further investigation.
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no explanation for the 2 to 3 weeks delayed phase 
of treatment; moreover monoamine depletion in 
healthy individuals does not cause depression,[1] 
therefore, other mechanisms must be involved. Many 
studies have shown that neurons make adaptations 
in response to treatment with antidepressants in the 
brain at different levels of cellular and molecular. 
It has been reported that antidepressants reduce 
atrophy of hippocampal CA3 pyramidal cells induced 
by stress[2,3] and increase hippocampal granular 
cells neurogenesis.[4] Also, it has been recently 
shown that antidepressant drugs like fluoxetine, 
clomipramine, amitriptyline and desipramine have 
anti‑inflammatory effects, and many studies have 
demonstrated these anti‑inflammatory effects.[5‑7] 
It has been demonstrated chronic inflammatory 

INTRODUCTION

Although antidepressants are used to treat depression, 
their therapeutic mechanism is not fully understood. 
The primary hypothesis for the action of antidepressants 
was enhancement of noradrenaline and serotonin 
levels. Although this seems to be true, but there is 
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diseases increase risk of depression[8‑10] and changes 
in immune system activity play a significant role in 
the pathogenesis of depression.[11,12]

Studies have shown that fluoxetine, a selective 
serotonin reuptake inhibitor (SSRI) antidepressant, 
specifically prevents cerebral delayed injury after 
ischemia.[13] In animal model of kainic acid‑induced cell 
death fluoxetine has significantly prevented neuronal 
death and has strongly suppressed gliosis (growth of 
astrocytes in damaged areas of the central nervous 
system) and proinflammatory markers.[14] It has 
been shown that as dose‑dependent, amitriptyline 
and venlafaxine that are serotonin‑norepinephrine 
reuptake inhibitor antidepressants, increase 
brain‑derived neurotrophic factor (BDNF) expression 
and Bcl‑2 (B‑cell lymphoma 2) and these factors 
promote neuronal regeneration in the mammalian 
central nervous system and have neuroprotective 
effects;[15‑17] also they increase copper‑zinc superoxide 
dismutase that has neuroprotective effects in 
hippocampus in brain damages.[1] Thus they have 
favorable effects on survival and function of neurons 
in the hippocampus.

In addition, maprotiline, a potent inhibitor of 
norepinephrine reuptake antidepressant, has recently 
been shown to prevent inflammation significantly if used 
as systemic or centrally (intracerebroventricular).[18] In 
this regard, studies have shown that maprotiline 
can prevent neuronal death in Huntington’s disease 
through the favorable effect on mitochondria and 
reduction of its permeability during apoptosis.[19]

Doxepin that is a member of tricyclic antidepressants 
family is a norepinephrine and serotonin reuptake 
inhibitor. Doxepin is used to treat depression and 
anxiety disorders and low doses of it are used to treat 
sleep disorders. Doxepin also has been known as 
second‑line therapy for chronic urticaria.[20] Various 
properties of doxepin have been reported; among 
them we can mention the anticonvulsant effects. The 
patients who have been treated with doxepin for more 
than three years show an improvement in control of 
seizure.[21] In addition, it also has anti‑inflammatory 
effects and topical application of doxepin has 
therapeutic effects on atopic dermatitis.[22] Doxepin 
as a protective agent against oxidative stress is also 
discussed. It has been observed in an in vitro study 
that doxepin in the medium protects neurons against 
oxidative stress; Doxepin make protection against 
oxidative stress through reduction of calcium signaling 
that is a key factor in the damages caused by oxidative 
stress.[23,24] In addition, doxepin increases antioxidants 
such as superoxide dismutase (SOD) and reduces lipid 
peroxide.[24]

Oxidative stress that mediated by oxygen reactive 
species (ROS) is due to imbalance between ROS 
production and activity of protective mechanisms. 
Oxidative stress has been identified that plays a 
clear role in the aging process[25] as well as some 
central nervous system diseases, such as Parkinson’s 
disease[26] and Alzheimer’s.[27] Therefore, according to 
various hypotheses on the effects of antidepressants 
in reducing oxidative stress and inflammatory factors 
induced by this process, the aim of this study was to 
investigate the effect of doxepin on avoidance learning 
and memory in old rats.

MATERIALS AND METHODS

Male Wistar rats 350‑400g (1 year old, rats were 
purchased  f r om the  I s fahan  Labora tory 
Animal stock) were housed four per cage and maintained 
on a 12 h light–dark cycle in an air conditioned constant 
temperature (23 ± 1°C) room, with food and water made 
available ad libitum. The Ethic Committee for Animal 
Experiments at Isfahan University approved the study 
and all experiments were conducted in accordance with 
the National Institute of Health Guide for the Care 
and Use of Laboratory Animals (NIH Publications 
No. 80‑23) revised 1996. Animals were divided into 
four groups (n = 8 in each group): The control, doxepin 
1 mg/kg (Ray Chemicals Pvt. Ltd.), doxepin 5 mg/kg 
and doxepin 10 mg/kg. Doxepin was dissolved in saline 
and was injected intraperitoneally. Rats received 
doxepin for 21 days. Animals in the control group 
received same volume of placebo. Then the rats were 
evaluated using passive avoidance learning test.

The apparatus consists of two separate chambers 
connected through a guillotine door. One chamber 
was illuminated, while the other was dark. The floor 
of both the chambers consists of steel grids, used to 
deliver electric shocks. On the acquisition trial, each 
rat was placed in illuminated chamber while its back 
was to the guillotine door. After 10 s of habituation, 
the guillotine door separating the illuminated and 
dark chambers was opened and the initial latency to 
enter the dark chamber was recorded. The guillotine 
door was closed immediately after the rat enters the 
dark chamber, and an electric foot shock (75 V, 0.2 mA, 
50 Hz) was delivered to the floor grids for 3 s, then the 
rat was removed from the dark chamber and returned 
to its home cage. Twenty four hours later, retention 
latency time to enter the dark chamber was taken in 
the same way as in the acquisition trial, but foot shock 
was not delivered, and the latency time was recorded 
up to a maximum of 600 s.[28]

The data were analyzed statistically by t‑test and one 
way analysis of variance (ANOVA) with Bonferroni’s 
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post hoc statistical tests. The significant level was set 
at P < 0.05. Results are expressed as mean ± S.E.M.

RESULTS

The mean initial latency in the acquisition trial wasn’t 
different among the groups significantly [control: 
25.4  ± 11.96; Doxepin 1, 5, 10 mg: 29.4  ± 5.08, 
17.8  ± 5.91, 18.78  ± 5.91 respectively; P  = 0.43; 
Figure 1]. Results from the retention phase of PAL 
as measured by mean retention latency time have 
shown twenty four hours after acquisition phase, 
mean retention latencies except in the Doxepin treated 
group 10 mg/kg (352.9  ± 89.98 s) was increased in 
Doxepin treated groups 1 mg/kg (549.12  ± 30.53 s; 
P < 0.05) and 5 mg/kg (553.57 ± 31.83 s; P < 0.05) than 
the control group (398.5 ± 72.3 s). Also, mean retention 
latency time was further significantly (P  < 0.05) in 
Doxepin treated groups 1 mg/kg and 5 mg/kg comparing 
to the Doxepin treated group 10 mg/kg [Figure 2].

DISCUSSION

The results suggest that, although high dose of 
doxepin has no positive effect on memory, but it 
significantly improves memory in low doses. These 
results can be interpreted with regard to the effects 
of antidepressants on brain processes. Rats were 
tested in this study were aged and we know that 
aging is associated with gradual neuronal death 
and reduction of the brain capabilities, including 
memory. The effect of doxepin to improve memory 
in rats probably is due to its effects on the processes 
associated with aging. Studies have been proposed 
several hypotheses for aging. One of these assumptions 
is the free radical theory. This theory states that aging 
of the organisms is due to accumulation of damages 
associated to free radical in the cells over time.[29] 
Free radicals cause inflammation and inflammation 
process induces production of free radicals and reduces 
antioxidant capacity of cells. Excessive produced 
free radicals interact with cell membrane fatty acids 

Figure 1: Dose-related effects of doxepin on initial latency in rats. Data 
are expressed as mean ± SEM. (n = 8)

and proteins and make disrupt their performance. 
In addition, these radicals can cause DNA damage 
that can cause cancer and age‑related disorders.[30] 
Recent studies suggest that aging is associated with 
chronic low‑grade inflammation. This inflammation 
caused by the imbalance between inflammatory 
and anti‑inflammatory mediators and production 
of cell‑mediated inflammation.[31] So it seems that 
anti‑inflammatory drugs may delay the process of 
aging and its side effects, such as loss of memory. 
Inflammation is part of the non‑specific response of the 
body’s response to any type of injury that is self‑limiting 
in normal conditions but in some disorders it continues 
to be chronic.[32] On the other hand, researches have 
shown inflammation is associated with many diseases, 
including Alzheimer’s disease, multiple sclerosis and 
Parkinson’s disease.[33] It has been suggested that 
chronic systemic inflammation accelerates the onset 
and progression of neurodegeneration. A possible 
explanation for this event is that systemic inflammation 
induces changes in phenotype of microglias from 
the relatively benign to the tissue‑destructive 
phenotype.[34]

Studies have shown a link between inflammation 
and depression. For example, in a meta‑analysis 
on 50 studies, most studies have shown that 
depressed patients have an increase in inflammatory 
cytokines, IL‑6 and acute phase proteins.[35] Studies 
on Antidepressants have been shown that some of 
these drugs also have anti‑inflammatory properties. 
For example, it was shown that paroxetine, an 
antidepressant drug that is selective serotonin 
reuptake inhibitors, may have anti‑inflammatory 
effects and inhibits oxidative stress‑mediated glial 
activity. This has led to offer paroxetine and its 
analogues as drugs to treat Parkinson’s disease 
that is associated with neuronal inflammation.[36] 
Also, studies have shown that doxepin, a tricyclic 

Figure 2: Dose-related effects of Doxepin on step-through latency in rats 
24 h after PA acquisition. Data are expressed as mean ± SEM. (n = 8). 
*P < 0.05 with respect to the control group, †P < 0.05 with respect to 
the Doxepin 10 mg group
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antidepressant, has anti‑inflammatory effects. 
Topical application of doxepin alone or in combination 
with triamcinolone acetonide is effective for the 
treatment of atopic dermatitis.[22] Also antioxidative 
stress of doxepin has been demonstrated in vitro 
that indicating the effectiveness of this substance on 
neurodegenerative disorders.[24] With regards to the 
anti‑inflammatory effects doxepin, it seems that this 
drug may improve the function of nervous system and 
memory by reducing the inflammation.

It is well known that doxepin has positive effects on 
sleep and studies have shown its beneficial effects 
on patients with insomnia.[37,38] Recent studies have 
demonstrated the involvement of sleep in memory 
formation. It seems that hippocampal activities 
through specific coordinated neuropsychological 
processes facilitates entry of new information into 
pre‑existing network of cortex and thereby contribute 
to memory consolidation during sleep.[39] When human 
is awake during appropriate biological times, human 
emotional and cognitive performance can be improved. 
On the other hand, when awakening occurs at the 
interface between inappropriate biological times (such 
as disorders of circadian sleep rhythm), it induces 
cognitive, emotional and learning disorders.[40] Saletin 
and colleagues showed that although sleep doesn’t 
generally consolidate all the information, but it 
purposefully improves some parts of memory, while 
actively causes amnesia of other parts.[41]

Other studies have shown that tricyclic antidepressants 
through a variety of mechanisms improved diseases 
that affect memory. For example, studies have shown 
that imipramine through prevention of beta‑amyloidal 
and TNF‑alpha accumulation prevents memory 
deficits and could be a candidate for the treatment of 
Alzheimer’s.[42] Also, another study on another tricyclic 
antidepressant, amitriptyline, which performed 
in aging and cognitive impairment in Alzheimer’s 
rats, showed its positive effects in the brains and it 
improved cognitive functioning as well as short‑term 
and long‑term memory.[43]

The results of this study showed that high doses 
of doxepin has no significant effect on memory and 
this could be due to toxic effects of high doses of the 
drug. Many studies using different approaches show 
differences in relative toxicity of antidepressants. There 
are evidences. that although tricyclic antidepressants 
are effective in treating various clinical disorders, 
in comparison with other antidepressants have side 
effects even at doses prescribed[44] and in this regard, 
it have been identified that doxepin is more toxic than 
amitriptyline.[45] Studies suggested that doxepin and 
other tricyclic antidepressants inhibit the enzyme 

Glutathione S‑transferase pi in parietal and frontal 
cortex, hippocampus and brain stem. It should be noted 
that the normal enzyme Glutathione S‑transferase pi 
acts as a barrier and prevents the brain from being 
exposed to the electrophiles. Therefore, the inhibition 
of this enzyme by tricyclic antidepressants (especially 
at high doses), caused brain damage by exposure to 
electrophilic reactions.[46] However, further studies 
should be done to evaluate the potential toxicity.

In general, present study suggests doxepin as a drug 
with potential positive effects on memory; however, 
further studies are needed to clarify the mechanism 
of action. Studies have been conducted on the effects 
of doxepin on oxidative stress was limited to in vitro, 
therefore evaluation of its effects as in vivo can confirm 
these conclusions with more confidence.
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