In silico design, construction and cloning of Trastuzumab humanized monoclonal antibody: A possible biosimilar for Herceptin

Authors

1 Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology; Molecular Medical, Kawsar Genomics and Biotech Complex, Tehran, Iran

2 Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran

3 Cell Bank, Pasteur Institute of Iran, Tehran, Iran

4 Molecular Medical, Research Center, Kawsar Genomics and Biotech Complex, Tehran, Iran

Abstract

Background: There is a novel hypothesis in that antibodies may have specificity for two distinct antigens that have been named "dual specificity." This hypothesis was evaluated for some defined therapeutic monoclonal antibodies (mAbs) such as Trastuzumab, Pertuzumab, Bevacizumab, and Cetuximab. In silico design and construction of expression vectors for trastuzumab monoclonal antibody also in this work were performed.
Materials and Methods: First, in bioinformatics studies the 3D structures of concerned mAbs were obtained from the Protein Data Bank (PDB). Three-dimensional structural alignments were performed with SIM and MUSTANG softwares. AutoDock4.2 software also was used for the docking analysis. Second, the suitable genes for trastuzumab heavy and light chains were designed, synthesized, and cloned in the prokaryotic vector. These fragments individually were PCR amplified and cloned into pcDNA™ 3.3-TOPO® and pOptiVEC™ TOPO® shuttle vectors, using standard methods.
Results: First, many bioinformatics tools and softwares were applied but we did not meet any new dual specificity in the selected antibodies. In the following step, the suitable expression cascade for the heavy and light chains of Trastuzumab therapeutic mAb were designed and constructed. Gene cloning was successfully performed and created constructs were confirmed using gene mapping and sequencing.
Conclusions: This study was based on a recently developed technology for mAb expression in mammalian cells. The obtained constructs could be successfully used for biosimilar recombinant mAb production in CHO DG44 dihydrofolate reductase (DHFR) gene deficient cell line in the suspension culture medium.

Keywords

1. Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, et al. ErbB receptors: From oncogenes to targeted cancer therapies. J Clin Invest 2007;117:2051-8.  Back to cited text no. 1
[PUBMED]  [FULLTEXT]  
2. Garrett JT, Rawale S, Allen SD, Phillips G, Forni G, Morris JC, et al. Novel engineered trastuzumab conformational epitopes demonstrate in vitro and in vivo antitumor properties against HER-2/neu. J Immunol 2007;178:7120-31.  Back to cited text no. 2
[PUBMED]  [FULLTEXT]  
3. Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 2007;6:349-56.  Back to cited text no. 3
[PUBMED]  [FULLTEXT]  
4. Ross JS, Fletcher JA, Linette GP, Stec J, Clark E, Ayers M, et al. The Her-2/neu gene and protein in breast cancer 2003: Biomarker and target of therapy. Oncologist 2003;8:307-25.  Back to cited text no. 4
[PUBMED]  [FULLTEXT]  
5. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 1992;89:4285-9.  Back to cited text no. 5
[PUBMED]  [FULLTEXT]  
6. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol 2006;6:343-57.  Back to cited text no. 6
[PUBMED]  [FULLTEXT]  
7. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783-92.  Back to cited text no. 7
[PUBMED]  [FULLTEXT]  
8. Magdelaine-Beuzelin C, Kaas Q, Wehbi V, Ohresser M, Jefferis R, Lefranc MP, et al. Structure-function relationships of the variable domains of monoclonal antibodies approved for cancer treatment. Crit Rev Oncol Hematol 2007;64:210-25.  Back to cited text no. 8
[PUBMED]  [FULLTEXT]  
9. Bostrom J, Yu SF, Kan D, Appleton BA, Lee CV, Billeci K, et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 2009;323:1610-4.  Back to cited text no. 9
[PUBMED]  [FULLTEXT]  
10. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol 2005;23:1073-8.  Back to cited text no. 10
[PUBMED]  [FULLTEXT]  
11. Foote J. Immunology. Isomeric antibodies. Science 2003;299:1327-8.  Back to cited text no. 11
[PUBMED]  [FULLTEXT]  
12. Satyanarayanajois S, Villalba S, Jianchao L, Lin GM. Design, synthesis, and docking studies of peptidomimetics based on HER2-herceptin binding site with potential antiproliferative activity against breast cancer cell lines. Chem Biol Drug Des 2009;74:246-57.  Back to cited text no. 12
[PUBMED]  [FULLTEXT]  
13. Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: Applications of AutoDock. J Mol Recognit 1996;9:1-5.  Back to cited text no. 13
[PUBMED]    
14. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney Jr DW, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003;421:756-60.  Back to cited text no. 14
    
15. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, De Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 2004;5:317-28.  Back to cited text no. 15
[PUBMED]  [FULLTEXT]  
16. Muller YA, Chen Y, Christinger HW, Li B, Cunningham BC, Lowman HB, et al. VEGF and the Fab fragment of a humanized neutralizing antibody: Crystal structure of the complex at 2.4 A resolution and mutational analysis of the interface. Structure 1998;6:1153-67.  Back to cited text no. 16
[PUBMED]    
17. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005;7:301-11.  Back to cited text no. 17
[PUBMED]  [FULLTEXT]  
18. Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM. MUSTANG: A multiple structural alignment algorithm. Proteins 2006;64:559-74.  Back to cited text no. 18
[PUBMED]  [FULLTEXT]  
19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785-91.  Back to cited text no. 19
[PUBMED]  [FULLTEXT]  
20. Lefranc MP. IMGT Collier de Perles for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb Protoc 2011;2011:643-51.  Back to cited text no. 20
[PUBMED]  [FULLTEXT]  
21. Lefranc MP, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene F, et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 2009;37(Database issue): D1006-12.  Back to cited text no. 21
    
22. European medicines agency: Concept paper on the revision of the guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: Quality issues. EMA/CHMP/BWP/617111/2010., www.ema.europa.eu.  Back to cited text no. 22