Biosensors in clinical chemistry: An overview

Authors

Department of Biochemistry, Mahathma Gandhi Medical College and Research Institute, Pillayarkuppam, Puducherry, India

Abstract

Biosensors are small devices that employ biological/biochemical reactions for detecting target analytes. Basically, the device consists of a biocatalyst and a transducer. The biocatalyst may be a cell, tissue, enzyme or even an oligonucleotide. The transducers are mainly amperometric, potentiometric or optical. The classification of biosensors is based on (a) the nature of the recognition event or (b) the intimacy between the biocatalyst and the transducer. Bioaffinity and biocatalytic devices are examples for the former and the first, whereas second and third generation instruments are examples for the latter. Cell-based biosensors utilizing immobilized cells, tissues as also enzyme immunosensors and DNA biosensors find variegated uses in diagnostics. Enzyme nanoparticle-based biosensors make use of small particles in the nanometer scale and are currently making a mark in laboratory medicine. Nanotechnology can help in optimizing the diagnostic biochips, which would facilitate sensitive, rapid, accurate and precise bedside monitoring. Biosensors render themselves as capable diagnostic tools as they meet most of the above-mentioned criteria.

Keywords

1. Heineman WR, Jensen WB, Leland C. Clark Jr. (1918-2005). Biosens Bioelectron 2006;21:1403-4.  Back to cited text no. 1
    
2. Weiner PH, Parcher JF. Improved urea electrode. Anal Chem 1973;45:417-9.  Back to cited text no. 2
    
3. Docolomanský P, Gemeiner P, Mislovicová D, Stefuca V, Danielsson B. Screening of concanavalin A-bead cellulose conjugates using an enzyme thermistor with immobilized invertase as the reporter catalyst. Biotechnol Bioeng 1994;43:286-92.  Back to cited text no. 3
    
4. Timur S, Anik U, Odaci D, Gorton L. Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochem commun 2007;9:1810-5.  Back to cited text no. 4
    
5. Turner AP, Karube I, Wilson GS. Biosensors: Fundamentals and applications. Oxford UK; Oxford University Press; 1987. p. 770  Back to cited text no. 5
    
6. Tusa JK, He H. Critical care analyzer with fluorescent optical chemosensors for blood analytes. J Mater Chem 2005;15:2640-7.  Back to cited text no. 6
    
7. Abel PU, von Woedtke T. Biosensors for in vivo glucose measurement: Can we cross the experimental stage. Biosens Bioelectron 2002;17:1059-70.  Back to cited text no. 7
[PUBMED]    
8. Morgan CL, Newman DJ, Price CP. Immunosensors: Technology and opportunities in laboratory medicine. Clin Chem 1996;42:193-209.  Back to cited text no. 8
[PUBMED]    
9. Byfield MP, Abuknesha RA. Biochemical aspects of biosensors. Biosens Bioelectron 1994;9:373-400.  Back to cited text no. 9
[PUBMED]    
10. Vo-Dinh T. Development of a DNA biochip: Principle and applications. Sens Actuators B Chem 1998;51:52-9.  Back to cited text no. 10
    
11. Salah K A, Alrokyan SA, Khan MN, Ansari AA. Nanomaterials as analytical tools for genosensors. Sensors (Basel) 2010;10:963-93.  Back to cited text no. 11
    
12. Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: Recommended definitions and classification. Biosens Bioelectron 2001;16:121-31.  Back to cited text no. 12
    
13. García-Martinez G, Bustabad EA, Perrot H, Gabrielli C, Bucur B, Lazerges M, et al. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit. Sensors 2011;11:7656-64.  Back to cited text no. 13
    
14. Scheller F, Schubert F. Biosensors [Internet].Structure and function of transducer, Amsterdam: Elsevier Science Ltd; 1992. p. 10-34. Available from: http://www.books.google.co.in/books?hl=en and lr=and id=TF7AW4kSY1 gC and oi=fnd and pg=PP1 and dq=SCHELLER+, SCHUBERT++1992 and ots=s8RJn1F6ff and sig=gGpTJ2asLuRsXzsqIDcdJvCJwyY. [Last cited 2012 Jul 26].  Back to cited text no. 14
    
15. Malhotra BD, Chaubey A. Biosensors for clinical diagnostics industry. Sens Actuators B Chem 2003;91:117-27.  Back to cited text no. 15
    
16. Yoo EH, Lee SY. Glucose biosensors: An overview of use in clinical practice. Sensors (Basel) 2010;10:4558-76.  Back to cited text no. 16
[PUBMED]    
17. Liu J, Wang J. A novel improved design for the first-generation glucose biosensor. Food Technol Biotechnol 2001;39:55-8.  Back to cited text no. 17
    
18. Turner AP, Chen B, Piletsky SA. In vitro diagnostics in diabetes: Meeting the challenge. Clin Chem 1999;45:1596-601.  Back to cited text no. 18
[PUBMED]    
19. Cass AE, Davis G, Francis GD, Hill HA, Aston WJ, Higgins IJ, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 1984;56:667-71.  Back to cited text no. 19
[PUBMED]    
20. Zafar MN, Safina G, Ludwig R, Gorton L. Characteristics of third-generation glucose biosensors based on Corynascus thermophilus cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working under physiological conditions. Anal Biochem 2012;425:36-42.  Back to cited text no. 20
[PUBMED]    
21. Zhu Z, Garcia-Gancedo L, Flewitt AJ, Xie H, Moussy F, Milne WI. A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors (Basel) 2012;12:5996-6022.  Back to cited text no. 21
[PUBMED]    
22. Carbon nanotube [Internet]. Wikipedia, the free encyclopedia, 2012. Available from: http://www.en.wikipedia.org/w/index.php?title=Carbon_nanotube and oldid=522624068. [Last cited 2012 Nov 14].  Back to cited text no. 22
    
23. Newman JD, Turner AP. Home blood glucose biosensors: A commercial perspective. Biosens Bioelectron 2005;20:2435-53.  Back to cited text no. 23
[PUBMED]    
24. Shichiri M, Kawamori R, Yamasaki Y, Hakui N, Abe H. Wearable artificial endocrine pancrease with needle-type glucose sensor. Lancet 1982;2:1129-31.  Back to cited text no. 24
[PUBMED]    
25. Renard E. Implantable continuous glucose sensors. Curr Diabetes Rev 2008;4:169-74.  Back to cited text no. 25
[PUBMED]    
26. Koschwanez HE, Reichert WM. In vitro, in vivo and post explantation testing of glucose-detecting biosensors: Current methods and recommendations. Biomaterials 2007;28:3687-703.  Back to cited text no. 26
[PUBMED]    
27. Song S, Xu H, Fan C. Potential diagnostic applications of biosensors: Current and future directions. Int J Nanomedicine 2006;1:433-40.  Back to cited text no. 27
[PUBMED]    
28. Chen J, Zhang WD, Ye JS. Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem commun 2008;10:1268-71.  Back to cited text no. 28
    
29. Ferri S, Kojima K, Sode K. Review of glucose oxidases and glucose dehydrogenases: A bird's eye view of glucose sensing enzymes. J Diabetes Sci Technol 2011;5:1068-76.  Back to cited text no. 29
[PUBMED]    
30. Wang P, Liu Q. Cell-Based Biosensors: Principles and applications. Definition of cell based biosensor: Artech House; 2009. p. 01-5.  Back to cited text no. 30
    
31. Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA. Development and application of cell-based biosensors. Ann Biomed Eng 1999;27:697-711.  Back to cited text no. 31
[PUBMED]    
32. Aravamudhan S, Kumar A, Mohapatra S, Bhansali S. Sensitive estimation of total cholesterol in blood using Au nanowires based micro-fluidic platform. Biosens Bioelectron 2007;22:2289-94.  Back to cited text no. 32
[PUBMED]    
33. Riechel T, Rechnitz G. Hybrid bacterial and enzyme membrane electrode with nicotinamide adenine dinucleotide response. J Memb Sci 1978;4:243-50.  Back to cited text no. 33
    
34. Singh S, Solanki PR, Pandey MK, Malhotra BD. Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films. Sens Actuators B Chem 2006;115:534-41.  Back to cited text no. 34
    
35. Hikuma M, Obana H, Yasuda T, Karube I, Suzuki S. A potentiometric microbial sensor based on immobilized Escherichia coli for glutamic acid. Anal Chim Acta 1980;116:61-7.  Back to cited text no. 35
    
36. Sidwell JS, Rechnitz GA. Bananatrode: An electrochemical biosensor for dompamine. Biotechnol Lett 1985;7:419-22.  Back to cited text no. 36
    
37. Baranauskas G, Gusmeroli R, Spinelli AS, Giordano C, Raimondi MT. Cell-based biosensors: Current trends of the development. J Appl Biomater Biomech 2006;4:125-34.  Back to cited text no. 37
[PUBMED]    
38. Ellis JM, Wolfgang MJ. A genetically encoded metabolite sensor for malonyl-CoA. Chem Biol 2012;19:1333-9.  Back to cited text no. 38
[PUBMED]    
39. Bojorge Ramírez N, Salgado AM, Valdman B. The evolution and developments of immunosensors for health and environmental monitoring: Problems and perspectives. Brazilian J Chem Eng 2009 26:227-49.  Back to cited text no. 39
    
40. Tomassetti M, Martini E, Campanella L, Favero G, Carlucci L, Mazzei F. Comparison of three immunosensor methods (surface plasmon resonance, screen-printed and classical amperometric immunosensors) for immunoglobulin G determination in human serum and animal or powdered milks. J Pharm Biomed Anal 2013;73:90-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22561059. [Last cited 2012 Jul 30].  Back to cited text no. 40
    
41. Aizawa M. Immunosensors. Philos Trans R Soc Lond. B Biol Sci 1987;316:121-34.  Back to cited text no. 41
    
42. Campanella L, Attioli R, Colapicchioni C, Tomassetti M. New amperometric and potentiometric immunosensors for anti-human immunoglobulin G determinations. Sens Actuators B Chem 1999;55:23-32.  Back to cited text no. 42
    
43. Palecek E, Fojta M, Tomschik M, Wang J. Electrochemical biosensors for DNA hybridization and DNA damage. Biosens Bioelectron 1998;13:621-8.  Back to cited text no. 43
[PUBMED]    
44. Borgmann S, Schulte A, Neugebauer S, Schuhmann W. Amperometric biosensors. In: Alkire RC, Kolb DM, Lipkowski J, editors. Advances in Electrochemical Science and Engineering. [Internet]. Weinheim: Wiley-VCH Verlag GmbH and Co, KGaA; 2011. p. 1-83. Available from: http://www.onlinelibrary.wiley.com/doi/10.1002/9783527644117.ch1/summary. [Last cited 2012 Jul 31].  Back to cited text no. 44
    
45. Fojta M. Electrochemical sensors for DNA interactions and damage. Electroanalysis. 2002;14:1449-63.  Back to cited text no. 45
    
46. Teles FR, Fonseca LP. Trends in DNA biosensors. Talanta 2008;77:606-23.  Back to cited text no. 46
    
47. Hashimoto K, Ito K, Ishimori Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal Chem 1994;66:3830-3.  Back to cited text no. 47
[PUBMED]    
48. Lucarelli F, Marrazza G, Turner AP, Mascini M. Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens Bioelectron 2004;19:515-30.  Back to cited text no. 48
[PUBMED]    
49. Wang J. DNA biosensors based on peptide nucleic acid (PNA) recognition layers. A review. Biosens Bioelectron 1998;13:757-62.  Back to cited text no. 49
[PUBMED]    
50. Stiriba SE, Frey H, Haag R. Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy. Angew Chem Int Ed Engl 2002;41:1329-34.  Back to cited text no. 50
[PUBMED]    
51. Graham CR, Leslie D, Squirrell DJ. Gene probe assays on a fibre-optic evanescent wave biosensor. Biosens Bioelectron 1992;7:487-93.  Back to cited text no. 51
[PUBMED]    
52. Liu X, Tan W. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Anal Chem 1999;71:5054-9.  Back to cited text no. 52
[PUBMED]    
53. Kerman K, Kobayashi M, Tamiya E. Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 2004;15:R1-11.  Back to cited text no. 53
    
54. Hang TC, Guiseppi-Elie A. Frequency dependent and surface characterization of DNA immobilization and hybridization. Biosens Bioelectron 2004;19:1537-48.  Back to cited text no. 54
[PUBMED]    
55. Cagnin S, Caraballo M, Guiducci C, Martini P, Ross M, Santaana M, et al. Overview of electrochemical DNA biosensors: New approaches to detect the expression of life. Sensors (Basel) 2009;9:3122-48.  Back to cited text no. 55
[PUBMED]    
56. Rippel RA, Seifalian AM. Gold revolution: Gold nanoparticles for modern medicine and surgery. J Nanosci Nanotechnol 2011;11:3740-8.  Back to cited text no. 56
    
57. Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci 2010;31:199-205.  Back to cited text no. 57
[PUBMED]    
58. Becker E, Navarro-López F, Francino A, Brenner B, Kraft T. Quantification of mutant versus wild-type myosin in human muscle biopsies using nano-LC/ESI-MS. Anal Chem 2007;79:9531-8.  Back to cited text no. 58
    
59. Malima A, Siavoshi S, Musacchio T, Upponi J, Yilmaz C, Somu S, et al. Highly sensitive microscale in vivo sensor enabled by electrophoretic assembly of nanoparticles for multiple biomarker detection. Lab Chip 2012;12:4748-54.  Back to cited text no. 59
[PUBMED]    
60. Schreiber A, Feldbrügge R, Key G, Glatz JF, Spener F. An immunosensor based on disposable electrodes for rapid estimation of fatty acid-binding protein, an early marker of myocardial infarction. Biosens Bioelectron 1997;12:1131-7.  Back to cited text no. 60
    
61. Jijun T, Jie H, Zhongchao H, Min P, Yuquan C. A novel lactate biosensor. Conf Proc IEEE Eng Med Biol Soc 2005;1:252-4  Back to cited text no. 61
    
62. Heinemann L. Continuous glucose monitoring and clinical trials. J Diabetes Sci Technol 2009;3:981-5.  Back to cited text no. 62
[PUBMED]    
63. Osaka T, Komaba S, Seyama M, Tanabe K. High-sensitivity urea sensor based on the composite film of electroinactive polypyrrole with polyion complex. Sens Actuators B Chem 1996;36:463-9.  Back to cited text no. 63
    
64. Hofmann U, Michaelis S, Winckler T, Wegener J, Feller KH. A whole-cell biosensor as in vitro alternative to skin irritation tests. Biosens Bioelectron 2013;39:156-62.  Back to cited text no. 64
[PUBMED]    
65. Babu MS, Bobby Z, Habeebullah S. Increased inflammatory response and imbalance in blood and urinary oxidant-antioxidant status in South Indian women with gestational hypertension and preeclampsia. Clin Biochem 2012;45:835-8.  Back to cited text no. 65
[PUBMED]    
66. Kwak BS, Kim HO, Kim JH, Lee S, Jung HI. Quantitative analysis of sialic acid on erythrocyte membranes using a photothermal biosensor. Biosens Bioelectron 2012;35:484-8.  Back to cited text no. 66
[PUBMED]    
67. Pundir CS, Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal Biochem 2012;429:19-31.  Back to cited text no. 67
[PUBMED]    
68. Monosik R, Stredansky M, Strurdik E. Application of electrochemical biosensor in clinical diagnosis in clinical diagnosis. J Clin Lab Anal 2012;26:22-34.  Back to cited text no. 68
    
69. Rosales-Rivera LC, Acero-Sánchez JL, Lozano-Sánchez P, Katakis I, O'Sullivan CK. Amperometric immunosensor for the determination of IgA deficiency in human serum samples. Biosens Bioelectron 2012;33:134-8.  Back to cited text no. 69