Viral and nonviral delivery systems for gene delivery

Authors

1 Molecular Genetic Laboratory, Alzahra Hospital; Pediatric Inherited Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

2 Molecular Genetic Laboratory, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran

3 Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran

Abstract

Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein-Barr virus)] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and (chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed.

Keywords

1. Stone D. Novel viral vector systems for gene therapy. Viruses 2010;2:1002-7.  Back to cited text no. 1
[PUBMED]  [FULLTEXT]  
2. Katare DP, Aeri V. Progress in gene therapy: A review. I.J.T.P.R 2010;1:33.  Back to cited text no. 2
    
3. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, et al. Gene transfer into humans immunotherapy of patients with advanced melanoma, using tumor- infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990;323:570-8.  Back to cited text no. 3
[PUBMED]  [FULLTEXT]  
4. Culver K, Cornetta K, Morgan R, Morecki S, Aebersold P, Kasid A, et al. Lymphocytes as cellular vehicles for gene therapy in mouse and man. Proc Natl Acad Sci USA 1991;88:3155-9.  Back to cited text no. 4
[PUBMED]  [FULLTEXT]  
5. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science 1995;270:475-80.  Back to cited text no. 5
[PUBMED]  [FULLTEXT]  
6. Resnik B, Langer PJ. Human germline gene therapy reconsidered. Hum Gene Ther 2001;12:1449-58.  Back to cited text no. 6
    
7. McDonough PG. The ethics of somatic and germline gene therapy. Ann N Y Acad Sci 1997;816:378-82.  Back to cited text no. 7
[PUBMED]  [FULLTEXT]  
8. Resnik DB, Langer PJ. Human germline gene therapy reconsidered. Hum Gene Ther 2001;12:1449-58.  Back to cited text no. 8
[PUBMED]  [FULLTEXT]  
9. Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G. Transgenic technology in farm animals-progress and perspectives. Exp Physiol 2000;85:615-25.  Back to cited text no. 9
[PUBMED]  [FULLTEXT]  
10. Johnson-Saliba M, Jans DA. Gene therapy: Optimising DNA delivery to the nucleus. Curr Drug Targets 2001;2:371-99.  Back to cited text no. 10
[PUBMED]  [FULLTEXT]  
11. Jaenisch R. Transgenic animals. Science 1988;240:1468-74.  Back to cited text no. 11
[PUBMED]  [FULLTEXT]  
12. Smith KR. Gene Therapy: The Potential Applicability of Gene Transfer Technology to the Human Germline. Int J Med Sci 2004;1:76-91.  Back to cited text no. 12
[PUBMED]  [FULLTEXT]  
13. Hirabayashi M, Takahashi R, Ito K, Kashiwazaki N, Hirao M, Hirasawa K, et al. A comparative study on the integration of exogenous DNA into mouse, rat, rabbit, and pig genomes. Exp Anim 2001;50:125-31.  Back to cited text no. 13
[PUBMED]  [FULLTEXT]  
14. Torres M. The use of embryonic stem cells for the genetic manipulation of the mous. Curr Topics Dev Biol 1998;36:99-114.  Back to cited text no. 14
[PUBMED]    
15. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by micro-injection of purified DNA. Proc Natl Acad Sci USA 1980;77:7380-4.  Back to cited text no. 15
[PUBMED]  [FULLTEXT]  
16. John PL, Kevin C, Joaquin G. Sperm and testis mediated DNA transfer as a means of gene therapy. Syst Biol Reprod Med 2011;57:35-42.  Back to cited text no. 16
    
17. Kevin S, Corrado S. Sperm-mediated gene transfer: Applications and implications. BioEssays 2005;27:551-62.  Back to cited text no. 17
    
18. Herrero MJ, Sabater L, Guenechea G, Sendra L, Montilla AI, Abargues R, et al. DNA delivery to 'ex vivo' human liver segments. Gene Ther 2011 in press.  Back to cited text no. 18
    
19. Suhonen J, Ray J, Blömer U, Gage FH, Kaspar B. Ex vivo and in vivo gene delivery to the brain. Curr Protoc Hum Genet 2006;13:Unit 13.3.  Back to cited text no. 19
    
20. Hu WW, Wang Z, Hollister SJ, Krebsbach PH. Localized viral vector delivery to enhance in situ regenerative gene therapy. Gene Ther 2007;14:891-901.  Back to cited text no. 20
[PUBMED]  [FULLTEXT]  
21. Takefumi S, Akira I, Shin E, Shiro B. In Situ Gene Therapy for Prostate Cancer. Curr Gene Ther 2005;5:111-9.  Back to cited text no. 21
    
22. Davis PB, Cooper MJ. Vectors for airway gene delivery. AAPS J 2007;9:2.  Back to cited text no. 22
[PUBMED]  [FULLTEXT]  
23. Huang Y, Liu X, Dong L, Liu Z, He X, Liu W. Development of Viral Vectors for Gene Therapy for Chronic Pain. Pain Res Treat 2011;2011:968218.  Back to cited text no. 23
    
24. Gardlik R, Palffy R, Hodosy J, Lukacs J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med Sci Monit 2005;11:110-21.  Back to cited text no. 24
    
25. Katare DP, Aeri V. Progress in gene therapy: A Review. I.J.T.P.R. 2010;1:33-41.  Back to cited text no. 25
    
26. Wickham TJ. Ligand-directed targeting of genes to the site of disease. Nat Med 2003;9:135-9.  Back to cited text no. 26
[PUBMED]  [FULLTEXT]  
27. Anson DS. The use of retroviral vectors for gene therapy-what are the risks? A review of retroviral pathogenesis and its relevance to retroviral vector-mediated gene delivery. Genet Vaccines Ther 2004;2:9.  Back to cited text no. 27
[PUBMED]  [FULLTEXT]  
28. Frederic D. Bushman. Retroviral integration and human gene therapy. J Clin Invest 2007;117:2083-6.  Back to cited text no. 28
    
29. Laufs S, Gentner B, Nagy KZ, Jauch A, Benner A, Naundrof S, et al. Retroviral vector integration occurs in preferred genomic targets of human bone marrow-repopulating cells. Blood 2003;101:2191-8.  Back to cited text no. 29
    
30. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002;346:1185-93.  Back to cited text no. 30
[PUBMED]  [FULLTEXT]  
31. Fischer A, Hacein-Bey-Aina S, Lagresle C, Garrigue A, Cavazanna-Calvo M. Gene therapy of severe combined immunodeficiency disease: Proof of principle of efficiency and safety issues. Gene therapy, primary immunodeficiencies, retrovirus, lentivirus, genome. Bull Acad Natl Med 2005;189:779-85.  Back to cited text no. 31
    
32. Buckly RH. Gene therapy for SCID: A complication after remarkable progress. Lancet 2003;360:1185-6.  Back to cited text no. 32
    
33. Fox JL. US authorities uphold suspension of SCID gene therapy. Nat Biotechnol 2003;21:217.  Back to cited text no. 33
    
34. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-XI. Science 2003;302:415-9.  Back to cited text no. 34
[PUBMED]  [FULLTEXT]  
35. Thrasher AJ, Gaspar HB, Baum C, Modlich U, Schambach A, Candotti F, et al. Gene therapy: X-SCID transgene leukaemologenicity. Nature 2006;443:E5-7.  Back to cited text no. 35
[PUBMED]  [FULLTEXT]  
36. Vorburger SA, Hunt KK. Adenoviral Gene Therapy. Oncologist 2002;7:46-59.  Back to cited text no. 36
[PUBMED]  [FULLTEXT]  
37. Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 1993;67:5911-21.  Back to cited text no. 37
[PUBMED]  [FULLTEXT]  
38. Reid T, Warren R, Kirn D. Intravascular adenoviral agents in cancer patients: Lessons from clinical trials. Cancer Gene Ther 2002;9:979-86.  Back to cited text no. 38
[PUBMED]  [FULLTEXT]  
39. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003;80:148-58.  Back to cited text no. 39
[PUBMED]  [FULLTEXT]  
40. Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999;286:2244-5.  Back to cited text no. 40
    
41. Teramato S, Ishii T, Matsuse T. Crisis of adenoviruses in human gene therapy. Lancet 2000;355:1911-2.  Back to cited text no. 41
[PUBMED]  [FULLTEXT]  
42. Lai CM, Lai YK, Rakoczy PE. Adenovirus and adeno-associated virus vectors. DNA Cell Biol 2002;21:895-913.  Back to cited text no. 42
[PUBMED]  [FULLTEXT]  
43. Flotte T, Carter B, Conrad C, Guggino W, Reynolds T, Rosenstein B, et al. A phase study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther 1996;7:1145-59.  Back to cited text no. 43
[PUBMED]  [FULLTEXT]  
44. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000;24:257-61.  Back to cited text no. 44
[PUBMED]  [FULLTEXT]  
45. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration Molecular therapy. J Am Soc Gene Ther 2010;18:643-50.  Back to cited text no. 45
[PUBMED]  [FULLTEXT]  
46. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL, et al. Vision 1 year after gene therapy for Leber's congenital amaurosis. N Engl J Med 2009;361:725-7.  Back to cited text no. 46
[PUBMED]  [FULLTEXT]  
47. Crane B, Luo X, Demaster A, Williams KD, Kozink DM, Zhang P, et al. Rescue administration of a helper dependent adenovirus vector with long-term efficacy in dogs with glycogen storage disease type Ia. Gene Ther 2011; in press.  Back to cited text no. 47
    
48. Alba R, Bosch A, Chillon M. Gutless adenovirus: Last-generation adenovirus for gene therapy. Gene Ther 2005;12:18-S27.  Back to cited text no. 48
[PUBMED]  [FULLTEXT]  
49. Croyle MA, Le HT, Linse KD, Cerullo V, Toietta G, Beaudet A, et al. PEGylated helper-dependent adenoviral vectors: Highly efficient vectors with an enhanced safety profile. Gene Ther 2005;12:579-87.  Back to cited text no. 49
[PUBMED]  [FULLTEXT]  
50. Amalfitano A, Hauser MA, Hu H, Serra D, Begy CR, Chamberlain JS. Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted. J Virol 1998;72:926-33.  Back to cited text no. 50
[PUBMED]  [FULLTEXT]  
51. Morral N, O'Neal W, Rice K, Leland M, Kaplan J, Piedra PA, et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci USA 1999;96:12816-21.  Back to cited text no. 51
[PUBMED]  [FULLTEXT]  
52. Balagué C, Zhou J, Dai Y, Alemany R, Josephs SF, Andreason G, et al. Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. Blood 2000;95:820-8.  Back to cited text no. 52
    
53. Morral N, Parks RJ, Zhou H, Langston C, Schiedner G, Quinones J, et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity. Hum Gene Ther 1998;9:2709-16.  Back to cited text no. 53
    
54. Ehrhardt A, Yant SR, Giering JC, Xu H, Engler JA, Kay MA. Somatic Integration From an Adenoviral Hybrid Vector into a Hot Spot in Mouse Liver Results in Persistent Transgene Expression Levels In Vivo. Mol Ther 2007;15:146-56.  Back to cited text no. 54
    
55. Shuji K, Kazunori H, Atsuko T, Donna JP, Philip N, Haruki O, et al. Adenovirus-retrovirus hybrid vectors achieve highly enhanced tumor transduction and antitumor efficacy in vivo. Mol Ther 2011;19:76-82.  Back to cited text no. 55
    
56. Liu W, Liu Z, Cao X, Cao Z, Xue L, Zhu F, et al. Recombinant human foamy virus, a novel vector for neurological disorders gene therapy, drives production of GAD in cultured astrocytes. Mol Ther 2007;15:1834-41.  Back to cited text no. 56
    
57. Mergia A, Heinkelein M. Foamy virus vectors. Curr Topics Microbiol Immunol 2003;277:131-59.  Back to cited text no. 57
    
58. Trobridge GD. Foamy virus vectors for gene transfer. Exp Opin Biol Ther 2009;9:1427-36.  Back to cited text no. 58
    
59. Liu W, Liu Z, Liu L, Xiao Z, Cao X, Cao Z, et al. A novel human foamy virus mediated gene transfer of GAD67 reduces neuropathic pain following spinal cord injury. Neurosci Lett 2008;432:13-8.  Back to cited text no. 59
    
60. Burtton EA, Wechuck JB, Wendell SK, Goins WF, Fink DJ, Glorioso JC. Multiple applications for replication-defective Herpes simplex virus vectors. Stem Cell 2001;19:358-77.  Back to cited text no. 60
    
61. Berto E, Bozac A, Marconi P. Development and application of replication incompetent HSV-1-based vectors. Gene Ther 2005;12:98-102.  Back to cited text no. 61
    
62. Goins WF, Goss JR, Chancellor MB, de Groat WC, Glorioso JC, Yoshimura N. Herpes simplex virus vectormediated gene delivery for the treatment of lower urinary tract pain. Gene Ther 2009;16:558-69.  Back to cited text no. 62
    
63. Wolfe D, Mata M, Fink DJ. A human trial of HSVmediated gene transfer for the treatment of chronic pain. Gene Ther 2009;16:455-60.  Back to cited text no. 63
    
64. Goss JR, Harley CF, Mata M, O'Malley ME, Goins WF, Hu X, et al. Herpes vectormediated expression of proenkephalin reduces bone cancer pain. Ann Neurol 2002;52:662-5.  Back to cited text no. 64
    
65. Goss JR, Mata M, Goins WF, Wu HH, Glorioso JC, Fink DJ. Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Ther 2001;8:551-6.  Back to cited text no. 65
    
66. Lachmann RH, Efstathiou S. The use of Herpes simolex virus-based vectors for gene delivery to the nervous system. Mol Med Today 1997;3:404-11.  Back to cited text no. 66
    
67. Federici T, Kutner R, Zhang XY, Kuroda H, Tordo N, Boulis NM, et al. Comparative analysis of HIV-1-based lentiviral vectors bearing lyssavirus glycoproteins for neuronal gene transfer. Genet Vaccines Ther 2009;7:1-9.  Back to cited text no. 67
    
68. Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol 2007;36:184-204.  Back to cited text no. 68
    
69. Kafri T. Gene delivery by lentivirus vectors an overview. Methods Mol Biol 2004;246:367-90.  Back to cited text no. 69
    
70. Balaggan KS, Ali RR. Ocular gene delivery using lentiviral vectors. Gene Ther 2012;19:145-53.  Back to cited text no. 70
    
71. Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kingsman SM, Mazarakis ND. Lentivirus-Mediated Gene Transfer to the Central Nervous System: Therapeutic and Research Applications. Human Gen Ther 2006;17:1-9.  Back to cited text no. 71
    
72. Azzouz M, Martin-Rendon E, Barber RD, Mitrophanous KA, Carter EE, Rohll JB, et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease. J Neurosci 2002;22:10302-12.  Back to cited text no. 72
    
73. Betchen SA, Kaplitt M. Future and current surgical therapies in Parkinson's disease. Curr Opin Neurol 2003;16:487-93.  Back to cited text no. 73
    
74. Blesch A, Ynski MH. Gene therapy and cell transplantation for Alzheimer's disease and spinal cord injury. Yonsei Med J 2004;45:28-31.  Back to cited text no. 74
    
75. Singer O, Marr RA, Rockenstein E, Crews L, Coufal NG, Gage FH, et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 2005;8:1343-9.  Back to cited text no. 75
    
76. Moroziewicz D, Kaufman HL. Gene therapy with poxvirus vectors. Curr Opin Mol Ther 2005;7:317-25.  Back to cited text no. 76
    
77. Gómez CE, Nájera JL, Krupa M, Esteban M. The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr Gene Ther 2008;8:97-120.  Back to cited text no. 77
    
78. Pastoret PP, Vanderplasschen A. Poxviruses as vaccine vectors. Comp Immunol Microbiol Infect Dis 2003;26:343-55.  Back to cited text no. 78
    
79. Moss B. Genetically engineered poxviruses for recombinant gene expression, vaccination and safety. Proc Natl Acad Sci U S A 1996;93:11341-8.  Back to cited text no. 79
    
80. McAneny D, Ryan CA, Beazley RM, Kaufman HL. Results of a phase I trial of a recombinant vaccinia virus that expresses carcinoembryonic antigen in patients with advanced colorectal cancer. Ann Surg Oncol 1996;3:395-500.  Back to cited text no. 80
    
81. Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 1996;347:1523-7.  Back to cited text no. 81
    
82. Mecsas J, Sugden B. Replication of plasmids derived from bovine papilloma virus type 1 and Epstein-Barr virus in cell in culture. Annu Rev Cell Biol 1987;3:87-108.  Back to cited text no. 82
    
83. Kishida T, Shin-Ya M, Imanishi J, Mazda O. Dept. of Microbiol., Kyoto Prefectural Univ. of Medicine Application of EBV-based artificial chromosome to genetic engineering of mammalian cells and tissues. Micro Nano Mechatron Hum Sci 2005;7-9:133-8.  Back to cited text no. 83
    
84. Hirai H, Satoh E, Osawa M, Inaba T, Shimazaki C, Kinoshita S, et al. Use of EBV-based vector/ HVJ-liposome complex vector for targeted gene therapy of EBV-associated neoplasms. Biochem Biophys Res Commun 1997;241:112-8.  Back to cited text no. 84
    
85. Robertson ES, Ooka T, Kieff ED. Epstein-Barr virus vectors for gene delivery to B lymphocytes. Proc Natl Acad Sci U S A. 1996;93:11334-40.  Back to cited text no. 85
    
86. Audouny SA, Deleij LF, Hoekstra D, Molema G. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res 2002;19:1599-6005.  Back to cited text no. 86
    
87. Varga CM, Hong K, Lanf Furburger DA. Quantitative analysis of synthesis gene delivery vector design properties. Mol Ther 2001;4:438-46.  Back to cited text no. 87
    
88. Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A. Long term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1992;1:363-9.  Back to cited text no. 88
    
89. Knapp JE, Liu D. Hydrodynamic delivery of DNA. Methods Mol Biol 2004;245:245-50.  Back to cited text no. 89
    
90. Herweijer H, Wolff JA. Progress and prospects: Naked DNA gene transfer and therapy. Gen Ther 2003;10:453-8.  Back to cited text no. 90
    
91. Yang NS, Burkhorder J, Roberts B, Martinell B, McCabe D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 1990;87:9568-72.  Back to cited text no. 91
    
92. Klein TM, Arentzen R, Lewis PA, Fitzpatrick McElligoutt S. Transformation of microbes, plants and animals by particle bombardment. Biotechnology 1992;10:286-91.  Back to cited text no. 92
    
93. Cheng L, Ziegelhoffer PR, Yang NS. In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci USA 1993;90:4455-9.  Back to cited text no. 93
    
94. Mahvi DM, Sheehy MJ, Yang NS. DNA cancer vaccines: A gene gun approach. Immunol Cell Biol 1997;75:456-60.  Back to cited text no. 94
    
95. Heller LC, Ugen K, Heller R. Electroporation for targeted gene transfer. Expert Opin Drug Deliv 2005;2:255-68.  Back to cited text no. 95
    
96. Lurquin PF. Gene transfer by electroporation. Mol Biotechnol 1997;7:5-35.  Back to cited text no. 96
    
97. Potter H, Cooke SW. Gene transfer into adherent cells growing on microbeads. In: Change DC, editor. Guide to electroporation and electrofusion. San Diego, CA, USA: Academic Press; 1992. p. 201-8.  Back to cited text no. 97
    
98. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transferin to mouse lyoma cells by electroporation in high electric fields. EMBOJ 1982;1:841-5.  Back to cited text no. 98
    
99. Dean DA, Machado Aranda D, Blair Parks K, Yeldandi AV, Young JL. Electroporation as a method for high level nonviral gene transfer to the lung. Gene Ther 2003;10:1608-15.  Back to cited text no. 99
    
100. Mc Mahon JM, Wells DJ. Electroporation for gene transfer to skeletal muscles: Current status. Biol Drugs 2004;18:155-65.  Back to cited text no. 100
    
101. Hatada S, Nikkuni K, Bentley SA, Kirby S, Smithies O. Gene correction in hematopoietic progenitor cells by homologous recombination. Proc Natl Acad Sci USA 2000;97:13807-11.  Back to cited text no. 101
    
102. Hofmann GA, Dev SB, Nanda GS, Rabusssay D. Electroporation therapy of solid tumors. Crit Rev Ther Drug Carrier Syst 1999;16:523-69.  Back to cited text no. 102
    
103. Gissel H, Clausen T. Excitation -induced Ca influx and skeletal muscle cell damage. Acta Physiol Scand 2001;171:327-34.  Back to cited text no. 103
    
104. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999;10:1258-66.  Back to cited text no. 104
    
105. Miao CH, Ye X, Thompson AR. High level factor VIII gene expression in vivo achieved by nonviral liver-specific gene therapy vectors. Hum Gen Ther 2003;14:1297-305.  Back to cited text no. 105
    
106. Jiang J, Yamato E, Miyazaki J. Intravenous delivery of naked plasmid DNA for in vivo cytokine expression. Biochem Biophys Res Commun 2001;289:1088-92.  Back to cited text no. 106
    
107. Maruyama H, Higuchi N, Kameda S, Miyazaki J, Gejyo F. Rat liver targeted naked plasmid DNA transfer by tail vein injection. Mol Biotechnol 2004;26:165-72.  Back to cited text no. 107
    
108. Yang J, Chen S, Huang L, Michalopoulos GK, Liu Y. Sustained expression of naked plasmid DNA encoding hepatocyte growth factor in mice promotes liver and overall body growth. Hepatology 2001;33:848-59.  Back to cited text no. 108
    
109. Kim HJ, Greeenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther 1996;7:1339-46.  Back to cited text no. 109
    
110. Liang HD, Lu QL, Xue SA, Halliwell M, Kodama T, Cosgrove DO, et al. Optimisation of ultrasound mediated gene transfer (sonoporation) in skeletal muscle cells. Ultrasound Med Biol 2004;30:1523-9.  Back to cited text no. 110
    
111. Plank C, Schillinger U, Scherer F, Bergemann C, Rémy JS, Krötz F, et al. The magnetofection method: Using magnetic force to enhance gene delivery. Biol Chem 2003;384:737-47.  Back to cited text no. 111
    
112. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, et al. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002;9:102-9.  Back to cited text no. 112
    
113. Plank C, Anton M, Rudolph C, Rosenecker J, Krötz F. Enhancing and targeting nucleic acid delivery by magnetic force. Exp Opin Biol Ther 2003;3:745-58.  Back to cited text no. 113
    
114. Mair L, Ford K, Alam MR, Kole R, Fisher M, Superfine R. et al. Size-Uniform 200 nm Particles: Fabrication and Application to Magnetofection. J Biomed Nanotechnol 2009;5:182-91.  Back to cited text no. 114
    
115. Liu D, Ren T, Gao X. Cationic transfection lipids. Curr Med Chem 2003;10:1735-7.  Back to cited text no. 115
    
116. Zhang S, Xu Y, Wang B, Qiao W, Liu D, Li Z. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Controlled Release 2004;100:165-80.  Back to cited text no. 116
    
117. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 2006;58:32-45.  Back to cited text no. 117
    
118. Boeckle S, Wagner E. Optimizing targeted gene delivery: Chemical Modification of viral vectors and synthesis of artificial virus vector systems. AAPS J 2006;8:Article 83.  Back to cited text no. 118
    
119. Kim TG, Kang SY, Kang JH, Cho MY, Kim JI, Kim SH, et al. Gene transfer into human hepatoma cells by receptor-associated protein/polylysine conjugates. Bioconjug Chem 2004;15:326-32.  Back to cited text no. 119
    
120. Wolschek MF, Thallinger C, Kursa M, Rössler V, Allen M, Lichtenberger C, et al. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology 2002;36:1106-14.  Back to cited text no. 120
    
121. Xu L, Pirollo KF, Tang WH, Rait A, Chang EH. Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther 1999;10:2941-52.  Back to cited text no. 121
    
122. Chiu SJ, Ueno NT, Lee RJ. Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin) conjugated polyethylenimine. J Control Release 2004;97:357-69.  Back to cited text no. 122
    
123. Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 2004;10:3667-77.  Back to cited text no. 123
    
124. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, et al. Tumor regression by targeted gene delivery to the neovasculature. Science 2002;296:2404-7.  Back to cited text no. 124
    
125. Plank C, Zatloukal K, Cotton M, Mechtler K, Wagner E. Gene transfer into hepatocytes using asialoglycoprotein receptor-mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand1. Bioconjug Chem 1992;3:533-9.  Back to cited text no. 125
    
126. Ziandy AG, Ferkol T, Dawson DV, Perlmutter DH, Davis PB. Chain length of the polylysine in receptor-targeted gene transfer complexes affects duration of reporter gene expression both in vitro and in vivo. 1999;274:4908-16.  Back to cited text no. 126
    
127. Hofland HE, Masson C, Iginla S, Osetinsky I, Reddy JA, Leamon CP, et al. Folate-targeted gene transfer in vivo. Mol Ther 2002;5:739-44.  Back to cited text no. 127
    
128. Son KK, Tkaeh D, Hall KJ. Efficient in vivo gene delivery by the negatively charged complexes of cationic liposome and plasmid. DNA Biochem Biophys Acta 2000;1468:6-10.  Back to cited text no. 128
    
129. Mastrobattista E, Koning GA, van Bloois L, Filipe AC, Jiskoot W, Storm G. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J Biol Chem 2002;277:27135-43.  Back to cited text no. 129
    
130. Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. NeuroRx 2005;2:99-107.  Back to cited text no. 130
    
131. Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 2006;1:297-315.  Back to cited text no. 131
    
132. Chen C, Han D, Cai C, Tang X. An overview of liposome lyophilization and its future potential. J Control Release 2010;142:299-311.  Back to cited text no. 132
    
133. Stenekes RJ, Loebis AE, Fernandes CM, Crommelin DJ, Hennink WE. Controlled release of liposomes from biodegradable dextran microspheres: A novel delivery concept. Pharm Res 2000;17:690-5.  Back to cited text no. 133
    
134. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987;84:7413-7.  Back to cited text no. 134
    
135. Cullis PR, Hope MJ, Tilcock CP. Lipid polymorphism and the roles of lipids in membranes. Chem Phys Lipds 1986;40:127-44.  Back to cited text no. 135
    
136. Wrobel I, Collins D. Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochem Biophys Acta 1995;1235:296-304.  Back to cited text no. 136
    
137. Schwartz B, Benoist C, Abdallah B, Scherman D, Behr JP, Demeneix BA. Liposopermine-based gene transfer into the newborn mous brain is optimized by a low lipospermine DNA charge ratio. Hum Gene Ther 1995;6:1515-24.  Back to cited text no. 137
    
138. Liu F, Qi H, Huang L. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther 1997;4:517-23.  Back to cited text no. 138
    
139. Yang JP, Huang L. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Ther 1995;92:1744-1748.  Back to cited text no. 139
    
140. Felgner JH, Kumar R, Sridhar CN, Wheeler CJ, Tsai YJ, Border R, et al. Enhanced gene delivery and mechanism studies with a novol series of cationic lipid formulations. J Biol Chem 1994;269:2550-61.  Back to cited text no. 140
    
141. Alton EW, Middleton PG, Caplen NJ, Smith SN, Steel DM, Munkonge FM, et al. Non-invasive liposome mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat Gent 1993;5:135-42.  Back to cited text no. 141
    
142. McQuillin A, Murray KD, Etheridge CJ, Stewart L, Cooper RG, Brett PM, et al. Optimization of liposome mediated transfection of a neuronal cell line. 1997;8:135-42.  Back to cited text no. 142
    
143. Fife K, Bower M, Cooper RG. Endothelial cell transfection with cationic liposomes and herpes simolex-thymidine kinase mediated killing. Gen Ther 1998;5:614-20.  Back to cited text no. 143
    
144. Birchall JC, Kellawy IW, Mills SN. Physicochemical characterization and transfection efficiency of lipid-based gene delivery complexes. Int J Pharm 1999;183:195-207.  Back to cited text no. 144
    
145. Stribling R, Brunette E, Liggitt D, Gaensler K, Debs R. Aerosol gene delivery in vivo. Proc Natl Acad Sci USA 1992;89:11277-81.  Back to cited text no. 145
    
146. Caplen NJ, Alton EW, Middleton PG, Dorin JR, Stevenson BJ, Gao X, et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1995;1:39-46.  Back to cited text no. 146
    
147. Alton EW, Stern M, Farley R, Jaffe A, Chadwick SL, Phillips J, et al. Cationic lipid mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: A double blind placebo-controlled trial. Lancet 1999;353:947-54.  Back to cited text no. 147
    
148. Zhu N, Liggitt D, Liu Y, Debs R. Systemic gene expression after intravenous DNA delivery into adult mice. Science 1993;261:209-11.  Back to cited text no. 148
    
149. Rogy MA, Auffenberg T, Espat NJ, Philip R, Remick D, Wollenberg GK, et al. Human tumor necrosis factor receptor(p55) and interleukin 10 gene transfer in the mouse reduces mortality to the lethal endotoxemia and also attenuates local inflammatory responses. J Exp Med 1995;181:2289-93.  Back to cited text no. 149
    
150. Murray KD, McQuillin A, Stewart L, Etheridge CJ, Cooper RG, Miller AD, et al. Cationic liposome mediated DNA transfection in organotype explant cultures of the ventral mesencephalon. Gene Ther 1999;6:190-7.  Back to cited text no. 150
    
151. Thierry AR, Lunardiskander Y, Bryant JL, Rabinovich P, Gallo RC, Mahan LC. Systemic gene therapy: Biodistribution and long term expression of a transgene in mice. Proc Natl Acad Sci USA 1995;92:9742-6.  Back to cited text no. 151
    
152. Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 2006;1:297-315.  Back to cited text no. 152
    
153. Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers. International. J Nanomed 2009;4:1-7.  Back to cited text no. 153
    
154. Kim ES, Lu C, Khuri FR, Tonda M, Glisson BS, Liu D, et al. A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced nonsmall cell lung cancer. Lung Cancer 2001;34:427-32.  Back to cited text no. 154
    
155. Goyal P, Goyal K, Kumar SG, Singh A, Katare OP, Mishra DN. Liposomal drug delivery systems-clinical applications. Acta Pharm 2005;55:1-25.  Back to cited text no. 155
    
156. Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Döblinger M, et al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release 2010;1:108-21.  Back to cited text no. 156
    
157. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenamine. Proc Natl Acad Sci USA 1995;92:7297-301.  Back to cited text no. 157
    
158. Martin ME, Rice KG. Peptide-guided Gene Delivery. AAPS J 2007;9:Article 3.  Back to cited text no. 158
    
159. Wolfert MA, Saymour LW. Atomic force microscopic analysis of the influence of the molecular weight of poly(L)lysine on the size of polyelectrolyte complexes formed with DNA. Gen Ther 1996;3:269-73.  Back to cited text no. 159
    
160. El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release 2004;94:1-14.  Back to cited text no. 160
    
161. Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 1997;4:823-32.  Back to cited text no. 161
    
162. Wadhwa MS, Collard WT, Adami RC, McKenzie DL, Rice KG. Peptide-mediated gene delivery: Influence of peptide structure on gene expression. Bioconjug Chem 1997;8:81-8.  Back to cited text no. 162
    
163. McKenzie DL, Collard WT, Rice KG. Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides. J Pept Res 1999;54:311-8.  Back to cited text no. 163
    
164. Adami RC, Collard WT, Gupta SA, Kwok KY, Bonadio J, Rice KG. Stability of peptide-condensed Plasmid DNA formulations. J Pharm Sci 1998;87:678-83.  Back to cited text no. 164
    
165. Plank C, Tang MX, Wolfe AR, Szoka FC. Branched cationic peptides for gene delivery: Role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum Gene Ther 1999;10:319-32 .  Back to cited text no. 165
    
166. Wightman L, Kircheis R, Rössler V, Carotta S, Ruzicka R, Kursa M, et al. Different behavior of the branched and linear polyethylenamine for gene delivery in vitro and in vivo. J Gene Med 2000;3:362-72.  Back to cited text no. 166
    
167. Zanta MA, Boussif O, Adib A, Behr JP. In vitro gene delivery to hepatocytes with galactosylenimine. Bioconjugate Chem 1997;8:839-44.  Back to cited text no. 167
    
168. Kircheis R, Kichler A, Wallner G, Kursa M, Ogris M, Felzmann T, et al. Coupling of cell binding ligands to polyethylenimine for targeted gene delivery. Gene Ther 1997;4:409-18.  Back to cited text no. 168
    
169. Erbacher P, Remy JS, Behr JP. Gene transfer with synthetic virus like particles via the integrin mediated endocytosis pathway. Gene Ther 1999;6:138-45.  Back to cited text no. 169
    
170. Tang MX, Szoka FC. The influence of polymer structure on the interaction of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 1997;4:823-32.  Back to cited text no. 170
    
171. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials 2003;24:1121-31.  Back to cited text no. 171
    
172. Fischer D, Bieber T, Li Y, Elasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenamine: Effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 1999;16:1273-9.  Back to cited text no. 172
    
173. Lim YB, Han SO, Kong HU. Biodegradable polyester, poly[alpha-(4-aminobutyl)-L-glycolic acid], as anon-toxic gene carrier. Pharm Res 2000;7:811-6.  Back to cited text no. 173
    
174. Gao X, Huang L. Potentiation of cationic liposome-mediated gene delivery by polycationics. Biochemistry 1996;35:1027-36.  Back to cited text no. 174
    
175. Lee RJ, Huang L. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 1996;271:8481-7.  Back to cited text no. 175
    
176. Lee LK, Williams CL, Devore D, Roth CM. Poly (eropylacrylicacid) enhances cationic lipid-mediated delivery of antisense oligonucleotides. Biomacromolecules 2006;7:1502-8.  Back to cited text no. 176
    
177. Maguire AM, Simonelli F, Pierce EA, Pugh EN, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008;358:2240-8.  Back to cited text no. 177
    
178. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration Molecular therapy. J Am Soc Gene Ther 2010;18:643-50.  Back to cited text no. 178
    
179. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL, et al. Vision 1 year after gene therapy for Leber's congenital amaurosis. N Engl J Med 2009;361:725-7.  Back to cited text no. 179
    
180. Cartier N, Aubourg P. Hematopoietic Stem Cell Transplantation and Hematopoietic Stem Cell Gene Therapy in X-Linked Adrenoleukodystrophy. Brain Pathol 2010;20:857-862.  Back to cited text no. 180
    
181. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, et al. AAV2-GAD gene therapy for advanced Parkinson's disease: A double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011;10:309-19.  Back to cited text no. 181