Authors
Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract
Background: Antidepressant drugs are commonly employed for anxiety and mood disorders. Sertraline is extensively used as antidepressant in clinic. In addition, adipose tissue represents an abundant and accessible source of adult stem cells with the ability to differentiate in to multiple lineages. Therefore, human adipose-derived stem cells (hADSCs) may be useful for autologous transplantation.
Materials and Methods: In the present study, we assessed the effect of antidepressant drug Sertraline on the proliferation and neurogenic differentiation of hADSCs using MTT assay and immunofluorescence technique respectively.
Results: MTT assay analysis showed that 0.5 μM Sertraline significantly increased the proliferation rate of hADSCs induced cells (P < 0.05), while immunofluorescent staining indicated that Sertraline treatment during neurogenic differentiation could be decreased the percentage of glial fibrillary acidic protein and Nestin-positive cells, but did not significantly effect on the percentage of MAP2 positive cells.
Conclusion: Overall, our data show that Sertraline can be promoting proliferation rate during neurogenic differentiation of hADSCs after 6 days post-induction, while Sertraline inhibits gliogenesis of induced hADSCs.
Keywords
1. | Chang EA, Beyhan Z, Yoo MS, Siripattarapravat K, Ko T, Lookingland KJ, et al. Increased cellular turnover in response to fluoxetine in neuronal precursors derived from human embryonic stem cells. Int J Dev Biol 2010;54:707-15. |
2. | Cabras S, Saba F, Reali C, Scorciapino ML, Sirigu A, Talani G, et al. Antidepressant imipramine induces human astrocytes to differentiate into cells with neuronal phenotype. Int J Neuropsychopharmacol 2010;13:603-15. |
3. | Duman RS. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 2004;5:11-25. |
4. | Wang JW, David DJ, Monckton JE, Battaglia F, Hen R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 2008;28:1374-84. |
5. | Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 2009;34:2376-89. |
6. | Chen SJ, Kao CL, Chang YL, Yen CJ, Shui JW, Chien CS, et al. Antidepressant administration modulates neural stem cell survival and serotoninergic differentiation through bcl-2. Curr Neurovasc Res 2007;4:19-2. |
7. | Fava M, Judge R, Hoog SL, Nilsson ME, Koke SC. Fluoxetine versus sertraline and paroxetine in major depressive disorder: Changes in weight with long-term treatment. J Clin Psychiatry 2000;61:863-7. |
8. | Lépine JP, Caillard V, Bisserbe JC, Troy S, Hotton JM, Boyer P. A randomized, placebo-controlled trial of sertraline for prophylactic treatment of highly recurrent major depressive disorder. Am J Psychiatry 2004;161:836-42. |
9. | Schneider LS, Nelson JC, Clary CM, Newhouse P, Krishnan KR, Shiovitz T, et al. An 8-week multicenter, parallel-group, double-blind, placebo-controlled study of sertraline in elderly outpatients with major depression. Am J Psychiatry 2003;160:1277-85. |
10. | Swenson JR, O'Connor CM, Barton D, Van Zyl LT, Swedberg K, Forman LM, et al. Influence of depression and effect of treatment with sertraline on quality of life after hospitalization for acute coronary syndrome. Am J Cardiol 2003;92:1271-6. |
11. | Fann JR, Uomoto JM, Katon WJ. Sertraline in the treatment of major depression following mild traumatic brain injury. J Neuropsychiatry Clin Neurosci 2000;12:226-32. |
12. | Greist J, Chouinard G, DuBoff E, Halaris A, Kim SW, Koran L, et al. Double-blind parallel comparison of three dosages of sertraline and placebo in outpatients with obsessive-compulsive disorder. Arch Gen Psychiatry 1995;52:289-95. |
13. | Pohl RB, Wolkow RM, Clary CM. Sertraline in the treatment of panic disorder: A double-blind multicenter trial. Am J Psychiatry 1998;155:1189-95. |
14. | Brady K, Pearlstein T, Asnis GM, Baker D, Rothbaum B, Sikes CR, et al. Efficacy and safety of sertraline treatment of posttraumatic stress disorder: A randomized controlled trial. JAMA 2000;283:1837-44. |
15. | Schloss P, Henn FA. New insights into the mechanisms of antidepressant therapy. Pharmacol Ther 2004;102:47-60. |
16. | Hauser RA, Zesiewicz TA. Sertraline for the treatment of depression in Parkinson's disease. Mov Disord 1997;12:756-9. |
17. | Peng ZW, Xue YY, Wang HN, Wang HH, Xue F, Kuang F, et al. Sertraline promotes hippocampus-derived neural stem cells differentiating into neurons but not glia and attenuates LPS-induced cellular damage. Prog Neuropsychopharmacol Biol Psychiatry 2012;36:183-8. |
18. | Wong ML, Licinio J. Research and treatment approaches to depression. Nat Rev Neurosci 2001;2:343-51. |
19. | Kusakawa S, Nakamura K, Miyamoto Y, Sanbe A, Torii T, Yamauchi J, et al. Fluoxetine promotes gliogenesis during neural differentiation in mouse embryonic stem cells. J Neurosci Res 2010;88:3479-87. |
20. | Brezun JM, Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of a dult rats. Neuroscience 1999;89:999-1002. |
21. | Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 1995;18:1417-26. |
22. | Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998;238:265-72. |
23. | Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7. |
24. | Benayahu D, Kletter Y, Zipori D, Wientroub S. Bone marrow-derived stromal cell line expressing osteoblastic phenotype in vitro and osteogenic capacity in vivo. J Cell Physiol 1989;140:1-7. |
25. | Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 1998;355:S247-56. |
26. | Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006;24:376-85. |
27. | Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001;7:211-28. |
28. | Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279-95. |
29. | Zavan B, Vindigni V, Gardin C, D'Avella D, Della Puppa A, Abatangelo G, et al. Neural potential of adipose stem cells. Discov Med 2010;10:37-43. |
30. | Fujimura J, Ogawa R, Mizuno H, Fukunaga Y, Suzuki H. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice. Biochem Biophys Res Commun 2005;333:116-21. |
31. | Jang S, Cho HH, Cho YB, Park JS, Jeong HS. Functional neural differentiation of human adiposetissue-derived stem cells using bFGF and forskolin. BMC Cell Biol2010;11:25. |
32. | Ahmadi N, Razavi S, Kazemi M, Oryan S. Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 2012;44:87-94. |
33. | McHugh PC, Rogers GR, Loudon B, Glubb DM, Joyce PR, Kennedy MA. Proteomic analysis of embryonic stem cell-derived neural cells exposed to the antidepressant paroxetine. J Neurosci Res 2008;86:306-16. |
34. | Dagytė G, Crescente I, Postema F, Seguin L, Gabriel C, Mocaër E, et al. Agomelatine reverses the decrease in hippocampal cell survival induced by chronic mild stress. Behav Brain Res 2011;218:121-8. |
35. | Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry 2011;16:738-50. |
36. | Liu JX, Pinnock SB, Herbert J. Novel control by the CA3 region of the hippocampus on neurogenesis in the dentate gyrus of the adult rat. PLoS One 2011;6:e17562. |
37. | Peng ZW, Xue F, Wang HN, Zhang RG, Chen YC, Wang Y, et al. Paroxetine up-regulates neurogenesis in hippocampus-derived neural stem cell from fetal rats. Mol Cell Biochem 2013;375:105-13. |
38. | McEwen BS. The neurobiology of stress: From serendipity to clinical relevance. Brain Res 2000;886:172-89. |
39. | Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 2000;48:766-77. |
40. | Jin Y, Lim CM, Kim SW, Park JY, Seo JS, Han PL, et al. Fluoxetine attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Brain Res 2009;1281:108-16. |
41. | Navailles S, Hof PR, Schmauss C. Antidepressant drug-induced stimulation of mouse hippocampal neurogenesis is age-dependent and altered by early life stress. J Comp Neurol 2008;509:372-81. |
42. | Boldrini M, Arango V. Antidepressants, age, and neuroprogenitors. Neuropsychopharmacology 2010;35:351-2. |
43. | Manev H, Uz T, Smalheiser NR, Manev R. Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur J Pharmacol 2001;411:67-70. |
44. | McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci 1999;22:105-22. |
45. | Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther 2003;3:705-13. |
46. | Shi L, Yang X. Differentiation potential and application of stem cells from adipose tissue. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2012;26:1007-11. |
47. | Oh JS, Park IS, Kim KN, Yoon do H, Kim SH, Ha Y. Transplantation of an adipose stem cell cluster in a spinal cord injury. Neuroreport 2012;23:277-82. |
48. | Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, et al. Human a dipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A 2012;18:1264-72. |
49. | Sutcigil L, Oktenli C, Musabak U, Bozkurt A, Cansever A, Uzun O, et al .Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin Dev Immunol 2007;76396. |
50. | Zusso M, Debetto P, Guidolin D, Barbierato M, Manev H, Giusti P. Fluoxetine-induced proliferation and differentiation of neural progenitor cells isolated from rat postnatal cerebellum. Biochem Pharmacol 2008;76:391-403. |