Authors
Department of Obstetrics and Gynecology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract
Background: One of the most important challenges in health care system is prevention of preterm birth. The present study was aimed to investigate the relation between interleukins 6 and 8 (IL-6 and IL-8) with preterm labor and response to tocolytic therapy.
Materials and Methods: In the year 2012, 75 women with the symptoms of preterm labor (cases) in compare with 75 term women (controls) were randomly selected and evaluated. Baseline data and serum levels of IL-6 and IL-8 (using immunoassay method) recorded. Hence, tocolysis in women in case group was performed with the use of magnesium sulfate and then they were followed until delivery time to assess the response to treatment.
Results: In case group, 59 women response to tocolytic treatment and delivered at term but 16 of them delivered prematurely. The curve constructed cut-off value for IL-6 was >37.9 (area under the curve [AUC], 0.674; standard error [SE], 0.043; P < 0.0001), and > 9.5 for IL-8 (AUC, 0.773; SE, 0.038; P < 0.0001), indicating a significant relationship with preterm labor. Furthermore, there was a significant relationship between serum IL-6 and IL-8 levels with the response to the treatment in cut-off >45 for IL-6 (AUC, 0.894; SE, 0.042; P < 0.0001) and >171 for IL-8 (AUC, 0.864; SE, 0.059; P < 0.0001).
Conclusion: In summary, our results suggest that the assessment of maternal serum concentrations of IL-6 and IL-8 can be used as appropriate biomarkers for predicting preterm labor and response to tocolytic therapy in these women. However, further studies needs to be done.
Keywords
1. | Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet 2008;371:75-84. |
2. | Roberts CL, Morris JM, Rickard KR, Giles WB, Simpson JM, Kotsiou G, et al. Protocol for a randomised controlled trial of treatment of asymptomatic candidiasis for the prevention of preterm births ACTRN12610000607077. BMC Pregnancy Childbirth 2011;11:19. |
3. | Hoyert DL, Mathews TJ, Menacker F, Strobino DM, Guyer B. Annual summary of vital statistics: 2004. Pediatrics 2006;117:168-83. |
4. | Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 2012;379:2151-61. [PUBMED] |
5. | Darmstadt GL, Bhutta ZA, Cousens S, Adam T, Walker N, de Bernis L, et al. Evidence-based, cost-effective interventions: How many newborn babies can we save? Lancet 2005;365:977-88. |
6. | Mwaniki MK, Atieno M, Lawn JE, Newton CR. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: A systematic review. Lancet 2012;379:445-52. |
7. | Shahshahan Z, Hashemi M. Crown-rump length discordance in twins in the first trimester and its correlation with perinatal complications. J Res Med Sci 2011;16:1224-7. [PUBMED] |
8. | Green NS, Damus K, Simpson JL, Iams J, Reece EA, Hobel CJ, et al. Research agenda for preterm birth: Recommendations from the March of Dimes. Am J Obstet Gynecol 2005;193:626-35. |
9. | Woodworth A, Moore J, G'Sell C, Verdoes A, Snyder JA, Morris L, et al. Diagnostic accuracy of cervicovaginal interleukin-6 and interleukin-6: Albumin ratio as markers of preterm delivery. Clin Chem 2007;53:1534-40. |
10. | Lockwood CJ, Kuczynski E. Risk stratification and pathological mechanisms in preterm delivery. Paediatr Perinat Epidemiol 2001;15 Suppl 2:78-89. |
11. | Mercer BM, Goldenberg RL, Das A, Moawad AH, Iams JD, Meis PJ, et al. The preterm prediction study: A clinical risk assessment system. Am J Obstet Gynecol 1996;174:1885-93. |
12. | Romero R, Durum S, Dinarello CA, Oyarzun E, Hobbins JC, Mitchell MD. Interleukin-1 stimulates prostaglandin biosynthesis by human amnion. Prostaglandins 1989;37:13-22. |
13. | Hasegawa K, Furuichi Y, Shimotsu A, Nakamura M, Yoshinaga M, Kamitomo M, et al. Associations between systemic status, periodontal status, serum cytokine levels, and delivery outcomes in pregnant women with a diagnosis of threatened premature labor. J Periodontol 2003;74:1764-70. |
14. | von Minckwitz G, Grischke EM, Schwab S, Hettinger S, Loibl S, Aulmann M, et al. Predictive value of serum interleukin-6 and-8 levels in preterm labor or rupture of the membranes. Acta Obstet Gynecol Scand 2000;79:667-72. |
15. | Vogel I, Goepfert AR, Thorsen P, Skogstrand K, Hougaard DM, Curry AH, et al. Early second-trimester inflammatory markers and short cervical length and the risk of recurrent preterm birth. J Reprod Immunol 2007;75:133-40. |
16. | Torbé A, Czajka R, Kordek A, Rzepka R, Kwiatkowski S, Rudnicki J. Maternal serum proinflammatory cytokines in preterm labor with intact membranes: Neonatal outcome and histological associations. Eur Cytokine Netw 2007;18:102-7. |
17. | Murtha AP, Greig PC, Jimmerson CE, Herbert WN. Maternal serum interleukin-6 concentration as a marker for impending preterm delivery. Obstet Gynecol 1998;91:161-4. |
18. | Murtha AP, Greig PC, Jimmerson CE, Roitman-Johnson B, Allen J, Herbert WN. Maternal serum interleukin-6 concentrations in patients with preterm premature rupture of membranes and evidence of infection. Am J Obstet Gynecol 1996;175:966-9. |
19. | Sorokin Y, Romero R, Mele L, Wapner RJ, Iams JD, Dudley DJ, et al. Maternal serum interleukin-6, C-reactive protein, and matrix metalloproteinase-9 concentrations as risk factors for preterm birth <32 weeks and adverse neonatal outcomes. Am J Perinatol 2010;27:631-40. |
20. | Bahar AM, Ghalib HW, Moosa RA, Zaki ZM, Thomas C, Nabri OA. Maternal serum interleukin-6, interleukin-8, tumor necrosis factor-alpha and interferon-gamma in preterm labor. Acta Obstet Gynecol Scand 2003;82:543-9. |
21. | Kawagoe Y, Sameshima H, Ikenoue T, Yasuhi I, Kawarabayashi T. Magnesium sulfate as a second-line tocolytic agent for preterm labor: A randomized controlled trial in Kyushu Island. J Pregnancy 2011;2011:1-6. |
22. | Haas DM, Imperiale TF, Kirkpatrick PR, Klein RW, Zollinger TW, Golichowski AM. Tocolytic therapy: A meta-analysis and decision analysis. Obstet Gynecol 2009;113:585-94. |
23. | Kam KY, Lamont RF. Developments in the pharmacotherapeutic management of spontaneous preterm labor. Expert Opin Pharmacother 2008;9:1153-68. |
24. | Simhan HN, Caritis SN. Prevention of preterm delivery. N Engl J Med 2007;357:477-87. |
25. | Tan TC, Devendra K, Tan LK, Tan HK. Tocolytic treatment for the management of preterm labour: A systematic review. Singapore Med J 2006;47:361-6. |
26. | March of Dimes, PMNCH, Save the Children, WHO. Born Too Soon: The Global Action Report on Preterm Birth. Eds CP Howson, MV Kinney, JE Lawn. World Health Organization. Geneva, 2012:52. |
27. | Lewis DF, Barrilleaux PS, Wang Y, Adair CD, Baier J, Kruger T. Detection of interleukin-6 in maternal plasma predicts neonatal and infectious complications in preterm premature rupture of membranes. Am J Perinatol 2001;18:387-91. |
28. | Turhan NO, Karabulut A, Adam B. Maternal serum interleukin 6 levels in preterm labor: Prediction of admission-to-delivery interval. J Perinat Med 2000;28:133-9. |
29. | Sozmen S, Mungan T, Micozkadioglu SD, Tapisiz OL. Predictive value of maternal serum and vaginal interleukin-6 levels in preterm labor. J Soc Gynecol Investig 2005;12:e1-6. |
30. | Alvarez-de-la-Rosa M, Rebollo FJ, Codoceo R, Gonzalez Gonzalez A. Maternal serum interleukin 1, 2, 6, 8 and interleukin-2 receptor levels in preterm labor and delivery. Eur J Obstet Gynecol Reprod Biol 2000;88:57-60. |
31. | Goldenberg RL, Iams JD, Mercer BM, Meis PJ, Moawad A, Das A, et al. The Preterm Prediction Study: Toward a multiple-marker test for spontaneous preterm birth. Am J Obstet Gynecol 2001;185:643-51. [PUBMED] |
32. | Murtha AP, Sinclair T, Hauser ER, Swamy GK, Herbert WN, Heine RP. Maternal serum cytokines in preterm premature rupture of membranes. Obstet Gynecol 2007;109:121-7. |