Authors
1 Department of Pathology, College of Veterinary Medicine, Sulaimani University/Kurdistan, Iraq
2 Department of Pathology and Forensic Pathology, School of Medicine-Sulaimani University/Kurdistan, Iraq
Abstract
Background: Ultraviolet B (UVB) is the most damaging component of sunlight. It rapidly activates the epidermal growth factor receptor (EGFR) and generates reactive oxygen species (ROS) in excessive quantities that quickly overwhelm tissue antioxidants.
Setting and Design: To demonstrate the effects of UVB radiation on EGFR expression in mice skin and to evaluate the role of antioxidants in the exposed group.
Materials and Methods: After obtaining the approval of the ethical committee, forty mice from BALB/c strain were used in this experiment and were allocated into 3 groups; 10 (control group); 15 (exposure group); and 15 (exposed and treated with antioxidants). Antioxidants were administered through subcutaneous injection. Skin biopsies from all groups were stained with EGFR antibodies. Total antioxidant status (TAS) was evaluated in all groups.
Statistical Analysis: The data obtained were analyzed using ANOVA, Duncan's test, and Pearson's Correlation.
Results: The highest EGFR expression in exposure group was of score 3 + (53%). The highest EGFR expression in treatment group was score 0 (40%). Apoptotic bodies and dermal mast cells increased in exposure group while decreased in treatment group. The mean values for TAS were measured for each group; control group = 1.2 mmol/l; exposure group = 0.87 mmol/l; treatment group =1.3 mmol/l.
Conclusions: UVB led to Seborrheic Keratosis (SK) in mice through enhancement of EGFR expression. Antioxidants effectively reduced UVB-induced SK, reduced epidermal changes, apoptotic bodies, and decreased dermal mast cells. TAS measurement declined in exposure group, while it was within normal range in most treated cases.
Keywords
1. | Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. UV-induced skin damage. Toxicology 2003;189:21-39. |
2. | Sluyter R, Halliday GM. Enhanced tumor growth in UV-irradiated skin is associated with an influx of inflammatory cells into the epidermis. Carcinogenesis 2000;21:1801-7. |
3. | Gottipati KR, Poulsen H, Starcher B. Passive cigarette smoke exposure inhibits ultraviolet light B-induced skin tumors in SKH-1 hairless mice by blocking the nuclear factor kappa B signalling pathway. Exp Dermatol 2008;17:780-7. |
4. | Dumaz N, van Kranen HJ, de Vries A, Berg RJ, Wester PW, van Kreijl CF, et al. The role of UV-B light in skin carcinogenesis through the analysis of p53 mutations in squamous cell carcinomas of hairless mice. Carcinogenesis 1997;18:897-904. |
5. | El-Abaseri TB, Fuhrman J, Trempus C, Shendrik I, Tennant RW, Hansen LA. Chemoprevention of UV light-induced skin tumorigenesis by inhibition of the epidermal growth factor receptor. Cancer Res 2005;65:3958-65. |
6. | El-Abaseri TB, Putta S, Hansen LA. Ultraviolet irradiation induces keratinocyte proliferation and epidermal hyperplasia through the activation of the epidermal growth factor receptor. Carcinogenesis 2006;27 :225-31. |
7. | Ley RD, Reeve VE. Chemoprevention of ultraviolet radiation-induced skin cancer. Environ Health Perspect 1997;105:981-4. |
8. | Fischer SM, Conti CJ, Viner J, Aldaz CM, Lubet RA. Celecoxib and difuoromethylornithine in combinate have strong therapeutic activity against UV-induced skin tumors in mice. Carcinogenesis 2003;24:945-52. |
9. | Svobodová A, Psotová J, Walterová D. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003;147:137-45. |
10. | El-Abaseri TB, Hansen LA. EGFR activation and ultraviolet light-induced skin carcinogenesis. J Biomed Biotechnol 2007;2007:97939. |
11. | Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 2006;126:2565-75. |
12. | Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: Current status and future prospects. J Assoc Physicians India 2004;52:794-804. |
13. | Ramoutar RR, Brumaghim JL. Antioxidant and anticancer properties and mechanisms of inorganic selenium, oxo-sulfur, and oxo-selenium compounds. Cell Biochem Biophys 2010;58:1-23. |
14. | Kwak HK, Yoon S. Relation of serum total antioxidant status with metabolic risk factors in Korean adults. Nutr Res Pract 2\007;1:335-40. |
15. | Schippinger W, Dandachi N, Regitnig P, Hofmann G, Balic M, Neumann R, et al. The predictive value of EGFR and HER-2/neu in tumor tissue and serum for response to anthracycline-based neoadjuvant chemotherapy of breast cancer. Am J Clin Pathol 2007;128:630-7. |
16. | Gamboa-Dominguez A, Dominguez-Fonseca C, Quintanilla-Martinez L, Reyes-Gutierrez E, Green D, Angeles-Angeles A, et al. Epidermal growth factor receptor expression correlates with poor survival in gastric adenocarcinoma from Mexican patients: A multivariate analysis using a standardized immunohistochemical detection system. Mod Pathol 2004;17:579-87. |
17. | Lee ES, Whang MR, Kang WH. Absence of human Papillomavirus DNA in nongenital seborrheic keratosis. J Korean Med Sci 2001;16:619-22. |
18. | Rubin E. Essential Pathology. Philadelphia: Lippincott Williams & Wilkins; 2001. |
19. | Bhuiyan ZH. Seborrheic keratosis: A case report. ORION Med J 2007;26:441-2. |
20. | Rubin R, Strayer DS. Rubin's Pathology: Clinicopathologic Foundations of medicine. Baltimore: Lippincott Williams & Wilkins; 2008. |
21. | Haw S, Lee JW, Shin MK and Kim NI. The effects of poly-gamma glutamic acid on broad band ultraviolet B-induced skin tumors in a mice model. Korean J Dermatol 2009;47:1012-8. |
22. | Cheng LI, Hong Z, Xiao-meiet F, Yan-ping H, Jin-wen L. Expressions of EGF and EGFR in seborrheic keratosis. J Clin Dermatol 2001:4-10. |
23. | Pesce C, Scalora S. Apoptosis in the areas of squamous differentiation of irritated seborrheic keratosis. J Cutan Pathol 2000;27:121-3. |
24. | Balin AK. Seborrheic Keratosis, http://emedicine.medscape.com/article/1059477-overview, retrieved 2012. |
25. | Bowen AR, Hanks AN, Murphy KJ, Florell SR, Grossman D. Proliferation, apoptosis, and survivin expression in keratinocytic neoplasms and hyperplasias. Am J Dermatopathol 2004;26:177-81. |
26. | Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treat Rev 1997;23:209-40. |
27. | Kuipers GK, Lafleur MV. Characterization of DNA damage induced by gamma-radiation-derived water radicals, using DNA repair enzymes. Int J Radiat Biol 1998;74:511-9. |
28. | Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 2007;13:1211-8. |
29. | Starkey JR, Crowle PK, Taubenberger S. Mast cell-deficient W/Wv mice exhibit a decreased rate of tumour angiogenesis. Int J Cancer 1988;42:48-52. |
30. | Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 2008;112:1269-79. |
31. | Kligman LH, Murphy GF. Ultraviolet B radiation increases hairless mouse mast cells in a dose-dependent manner and alters distribution of UV-induced mast cell growth factor. Photochem Photobiol 1996;63:123-7. |
32. | Chacón-Salinas R, Limón-Flores AY, Chávez-Blanco AD, Gonzalez-Estrada A, Ullrich SE. Mast cell-derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. J Immunol 2011;186:25-31 |
33. | Hart PH, Grimbaldeston MA, Finlay-Jones JJ. Sunlight, immunosuppression and skin cancer: Role of histamine and mast cells. Clin Exp Pharmacol Physiol 2001;28:1-8. |
34. | Jurkiewicz BA. The role of free radicals, iron, and antioxidants in ultraviolet radiation-induced skin damage. PhD thesis, University of Iowa 1995. |
35. | Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J, et al. The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 1998;106(Suppl 1):289-95. |
36. | Marlin DJ, Dunnett CE. Oxidative stress, oxidative damage and antioxidants a beginners guide. Newmarket, Suffolk, UK: David Marlin Consulting Ltd; 2007. |
37. | Gensler HL, Magdaleno M. Topical vitamin E inhibition of immunosuppression and tumorigenesis induced by Ultraviolet irradiation. Nutr Cancer 1991;15:97-106. |
38. | Yuen KS, Halliday GM. Alpha-Tocopherol, an inhibitor of epidermal lipid peroxidation, prevents ultraviolet radiation from suppressing the skin immune system. Photochem Photobiol 1997;65:587-92. |
39. | Steenvoorden DP, Beijersbergen van Henegouwen G. Protection against UV-induced systemic immunosuppression in mice by a single topical application of the antioxidant vitamins C and E. Int J Radiat Biol 1999;75: 747-55. |
40. | Burke KE, Clive J, Combs GF jr, Commisso J, Keen CL, Nakamura RM. Effects of topical and oral vitamin E on pigmentation and skin cancer induced by ultraviolet irradiation in Skh: 2 hairless mice. Nutr Cancer 2000;38:87-97. |
41. | Neeraj G, Sharad M, Tejram S, Abhinav M, Suresh V, Rajeev T. Evaluation of anti-apoptotic activity of different dietary antioxidants in renal cell carcinoma against hydrogen peroxide. Asian Pac J Trop Biomed 2011;1:57-63. |
42. | Zeisel SH. Antioxidants suppress apoptosis. J Nutr 2004;134:3179S-80S. |
43. | Blumenthal RD, Lew W, Reising A, Soyne D, Osorio L, Ying Z et al. Anti-oxidant vitamins reduce normal tissue toxicity induced by radio-immunotherapy. Int J Cancer 2000;86:276-80. |