The Effects of kisspeptin-10 on Migration and Proliferation of Endothelial Cell

Authors

Department of Physiology, Physiology Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: Migration, expansion and survival of endothelial cells that are an important cellular component of blood vessels plays an important role in the induction of tumor growth. Kisspeptins (kp), peptides that bind to coupled-G protein receptor (GPR54), inhibit each step of metastatic cascade include invasion, migration and homing, angiogenesis, survival and proliferation. In this study we investigated effects of kisspeptin-10, the most potent member of kisspeptin family, on Migration and proliferation of endothelial cells that are necessary for angiogenesis and tumor metastasis.
Materials and Methods: We compared migration of Human Umbilical Vein Endothelial Cells (HUVECs) were treated with 10-100 or 500 nM kp-10 for 24 hours and no treated cells using an in vitro trans membrane migration assay and HUVEC proliferation of treated endothelial cells with 10-100 or 500 nM kp-10 for 48 hours and no treated cells was measured by MTT Cell Proliferation Assay Kit. Analysis of data was performed using the Kruskal-Wallis test followed by the Mann-Whitney test.
Results: Migration and proliferation of endothelial cells were increased at lower concentration of kp-10 specially at 100 nM while higher concentration reduced both migration and proliferation.
Conclusion: Our data showed that different concentrations of kp-10 have distinct effects on migration and proliferation of endothelial cells.

Keywords

1.
Srinivasan R, Zabuawala T, Huang H, Zhang J, Gulati P, Fernandez S, et al. Erk1 and Erk2 regulate endothelial cell proliferation and migration during mouse embryonic angiogenesis. PLoS One 2009;4:e8283.  Back to cited text no. 1
    
2.
Cho SG, Yi Z, Pang X, Yi T, Wang Y, Luo J, et al. Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Res 2009;69:7062-70.  Back to cited text no. 2
    
3.
Ramaesh T, Logie JJ, Roseweir AK, Millar RP, Walker BR, Hadoke PW, et al. Kisspeptin-10 inhibits angiogenesis in human placental vessels ex vivo and endothelial cells in vitro. Endocrinology 2010;151:5927-34.  Back to cited text no. 3
    
4.
Dejana E. Endothelial cell-cell junctions: Happy together. Nat Rev Mol Cell Biol 2004;5:261-70.  Back to cited text no. 4
    
5.
Welch DR, Chen P, Miele ME, McGary CT, Bower JM, Stanbridge EJ, et al. Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene 1994;9:255-62.  Back to cited text no. 5
    
6.
Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 1996;88:1731-7.  Back to cited text no. 6
    
7.
Shirasaki F, Takata M, Hatta N, Takehara K. Loss of expression of the metastasis suppressor gene KiSS1 during melanoma progression and its association with LOH of chromosome 6q16.3-q23. Cancer Res 2001;61:7422-5.  Back to cited text no. 7
    
8.
Sanchez-Carbayo M, Capodieci P, Cordon-Cardo C. Tumor suppressor role of KiSS-1 in bladder cancer: Loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. Am J Pathol 2003;162:609-17.  Back to cited text no. 8
    
9.
Lee JH, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res 1997;57:2384-7.  Back to cited text no. 9
    
10.
Dhar DK, Naora H, Kubota H, Maruyama R, Yoshimura H, Tonomoto Y, et al. Downregulation of KiSS-1 expression is responsible for tumor invasion and worse prognosis in gastric carcinoma. Int J Cancer 2004;111:868-72.  Back to cited text no. 10
    
11.
Ikeguchi M, Yamaguchi K, Kaibara N. Clinical significance of the loss of KiSS-1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in esophageal squamous cell carcinoma. Clin Cancer Res 2004;10:1379-83.  Back to cited text no. 11
    
12.
Navenot JM, Fujii N, Peiper SC. Activation of Rho and Rho-associated kinase by GPR54 and KiSS1 metastasis suppressor gene product induces changes of cell morphology and contributes to apoptosis. Mol Pharmacol 2009;75:1300-6.  Back to cited text no. 12
    
13.
Olbrich T, Ziegler E, Türk G, Schubert A, Emons G, Gründker C. Kisspeptin-10 inhibits bone-directed migration of GPR54-positive breast cancer cells: Evidence for a dose-window effect. Gynecol Oncol 2010;119:571-8.  Back to cited text no. 13
    
14.
Ren C, Kumar S, Chanda D, Chen J, Mountz JD, Ponnazhagan S. Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 2008;26:2332-8.  Back to cited text no. 14
    
15.
Chen Y, Yusenko MV, Kovacs G. Lack of KISS1R expression is associated with rapid progression of conventional renal cell carcinomas. J Pathol 2011;223:46-53.  Back to cited text no. 15
    
16.
Huang YL, Qiu RF, Mai WY, Kuang J, Cai XY, Dong YG, et al. Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro. J Zhejiang Univ Sci B 2012;13:20-8.  Back to cited text no. 16
    
17.
Cho SG, Li D, Stafford LJ, Luo J, Rodriguez-Villanueva M, Wang Y, et al. KiSS1 suppresses TNFalpha-induced breast cancer cell invasion via an inhibition of RhoA-mediated NF-kappaB activation. J Cell Biochem 2009;107:1139-49.  Back to cited text no. 17
    
18.
Masui T, Doi R, Mori T, Toyoda E, Koizumi M, Kami K, et al. Metastin and its variant forms suppress migration of pancreatic cancer cells. Biochem Biophys Res Commun 2004;315:85-92.  Back to cited text no. 18
    
19.
Zajac M, Law J, Cvetkovic DD, Pampillo M, McColl L, Pape C, et al. GPR54 (KISS1R) transactivates EGFR to promote breast cancer cell invasiveness. PLoS One 2011;6:e21599.  Back to cited text no. 19
    
20.
Dhillo WS, Savage P, Murphy KG, Chaudhri OB, Patterson M, Nijher GM, et al. Plasma kisspeptin is raised in patients with gestational trophoblastic neoplasia and falls during treatment. Am J Physiol Endocrinol Metab 2006;291:E878-84.  Back to cited text no. 20
    
21.
Castaño JP, Martínez-Fuentes AJ, Gutiérrez-Pascual E, Vaudry H, Tena-Sempere M, Malagón MM. Intracellular signaling pathways activated by kisspeptins through GPR54: Do multiple signals underlie function diversity? Peptides 2009;30:10-5.  Back to cited text no. 21
    
22.
Cho SG, Wang Y, Rodriguez M, Tan K, Zhang W, Luo J, et al. Haploinsufficiency in the prometastasis Kiss1 receptor Gpr54 delays breast tumor initiation, progression, and lung metastasis. Cancer Res 2011;71:6535-46.  Back to cited text no. 22