Molecular detection of metallo-β-lactamase gene blaVIM-1 in imipenem-resistant Pseudomonas aeruginosa strains isolated from hospitalized patients in the hospitals of Isfahan


Department of Bacteriology and Virology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran


Background: Pseudomonas aeruginosa is an opportunistic human pathogen that causes serious problems, especially in people, who have immunodeficiency. In recent times, metallo-β-lactamase (MBLs) resistance in this bacterium has led to some difficulties in treating bacterial infections. The metallo-beta-lactamase family of genes, including blaVIM-1, is being reported with increasing frequency worldwide. The aim of this study is the detection of the metallo-β-lactamase gene blaVIM-1 in imipenem-resistant P. aeruginosa (IRPA) strains isolated from hospitalized patients.
Materials and Methods: In this study, 106 P. aeruginosa samples were isolated from various nosocomial infections. The isolates were identified, tested for susceptibility to various antimicrobial agents by the Kirby-Bauer disk diffusion method, and all the imipenem-resistant isolates were screened for the presence of MBLs by using the combined disk (IMP-EDTA). The minimal inhibitory concentration (MIC) of imipenem was determined by E-test on the Mueller-Hinton agar. To detect the blaVIM-1 gene, the isolates were subjected to a polymerase chain reaction (PCR).
Results: Of all the P. aeruginosa isolates, 62 (58.5%) were found to be imipenem-resistant P. aeruginosa (MIC ≥32 μg/ml). Twenty-six (42%) of the imipenem-resistant isolates were MBL positive. None of these isolates carried the blaVIM-1 gene using the PCR assay.
Conclusion: The results demonstrated the serious therapeutic threat of the MBL-producing P. aeruginosa populations. The rate of imipenem resistance due to MBL was increased dramatically. Early detection and infection-control practices are the best antimicrobial strategies for this organism. None of MBL-producing isolates in this study carry the blaVIM-1 gene; therefore, another gene in the MBL family should be investigated.


Patzer JA, Dzierzanowska D. Increase of imipenem resistance among Pseudomonas aeruginosa isolates from a polish paediatric hospital (1993-2002). Int J Antimicrob Agents 2007;29:153-8.  Back to cited text no. 1
Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother 2004;48:4654-61.  Back to cited text no. 2
Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol 2004;42:5094-101.  Back to cited text no. 3
Farra A, Islam S, Strålfors A, Sörberg M, Wretlind B. Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int J Antimicrob Agents 2008;31:427-33.  Back to cited text no. 4
Huang YT, Chang SC, Lauderdale TL, Yang AJ, Wang JT. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa carrying metallo-beta-lactamase genes in Taiwan. Diagn Microbiol Infect Dis 2007;59:211-6.  Back to cited text no. 5
Nikaido H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 1994;264:382-8.  Back to cited text no. 6
Nikaido H, Nikaido K, Harayama S. Identification and characterization of porins in Pseudomonas aeruginosa. J Biol Chem 1991;266:770-9.  Back to cited text no. 7
Lodge JM, Minchin SD, Piddock LJ, Bushy SJ. Cloning, sequence and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem J 1990;272:627-31.  Back to cited text no. 8
Tam VH, Chang KT, LaRocco MT, Schilling AN, McCauley SK, Poole K, et al. Prevalence, mechanisms, and risk factors of carbapenem resistance in bloodstream isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2007;58:309-14.  Back to cited text no. 9
Walsh TR. Clinically significant carbapenemases: An update. Curr Opin Infect Dis 2008;21:367-71.  Back to cited text no. 10
Queenan AM, Bush K. Carbapenemases: The versatile beta-lactamases. Clin Microbiol Rev 2007;20:440-58, table of contents.  Back to cited text no. 11
Livermore DM, Woodford N. Carbapenemases: A problem in waiting? Curr Opin Microbiol 2000;3:489-95.  Back to cited text no. 12
Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 2002;8:321-31.  Back to cited text no. 13
Sacha P, Wieczorek P, Hauschild T, Zórawski M, Olszañska D, Tryniszewska E. Metallo-beta-lactamases of Pseudomonas aeruginosa - A novel mechanism resistance to beta-lactam antibiotics. Folia Histochem Cytobiol 2008;46:137-42.  Back to cited text no. 14
Henrichfreise B, Wiegand I, Sherwood KJ, Wiedemann B. Detection of VIM-2 metallo-beta-lactamase in Pseudomonas aeruginosa from Germany. Antimicrob Agents Chemother 2005;49:1668-9.  Back to cited text no. 15
Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol 2005;43:3129-35.  Back to cited text no. 16
Wirth FW, Picoli SU, Cantarelli VV, Gonçalves AL, Brust FR, Santos LM, et al. Metallo-beta-lactamase-producing Pseudomonas aeruginosa in two hospitals from southern Brazil. Braz J Infect Dis 2009;13:170-2.  Back to cited text no. 17
Forozsh FM, Irajian G, Moslehi TZ, Fazeli H, Salehi M, Rezania S. Drug resistance pattern of Pseudomonas aeruginosa strains isolated from cystic fibrosis patients at Isfahan AL Zahra hospital, Iran (2009-2010). Iran J Microbiol 2012;4:94-7.  Back to cited text no. 18
Gupta V. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin Investig Drugs 2008;17:131-43.  Back to cited text no. 19
Lee K, Yong D, Yum JH, Lim YS, Bolmström A, Qwärnström A, et al. Evaluation of Etest MBL for detection of blaIMP-1 and blaVIM-2 allele-positive clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2005;43:942-4.  Back to cited text no. 20
Clinical and Laboratory Standards Institute. Performance standards for Antimicrobial susceptibility Testing; Twenty-Third Informational Supplement: Document M100-S23. USA: Wayne, PA; CLSI; 2013.  Back to cited text no. 21
Hemalatha V, Sekar U, Kamat V. Detection of metallo betalactamase producing Pseudomonas aeruginosa in hospitalized patients. Indian J Med Res 2005;122:148-52.  Back to cited text no. 22
Cornaglia G, Akova M, Amicosante G, Cantón R, Cauda R, Docquier JD, et al.; ESCMID Study Group for Antimicrobial Resistance Surveillance (ESGARS). Metallo-beta-lactamases as emerging resistance determinants in Gram-negative pathogens: Open issues. Int J Antimicrob Agents 2007;29:380-8.  Back to cited text no. 23
Franco MR, Caiaffa-Filho HH, Burattini MN, Rossi F. Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian University hospital. Clinics (Sao Paulo) 2010;65:825-9.  Back to cited text no. 24
Sadeghi A, Rahimi B, Shojapour M. Molecular detection of metallo-β-lactamase genes blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2 and blaSPM-1 in Pseudomonas aeruginosa isolated from hospitalized patients in Markazi province by Duplex-PCR. Afr J Microbiol Res 2012;6:2965-9.  Back to cited text no. 25
Nam Hee R, Jung Sook H, Dong Seok J, Jae Ryong K. Prevalence of Metallo-β-lactamases in Pseudomonas aeruginosa and Acinetobacter baumannii. Korean J Clin Microbiol 2010;13:169-72.  Back to cited text no. 26
Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 2004;42:2074-9.  Back to cited text no. 27
Cheng K, Smyth RL, Gvan JR, Doherty C, Winstannley C, Denning N, et al. Spread of beta-lactam resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996;348:639-42.  Back to cited text no. 28
Yan JJ, Hsueh PR, Ko WC, Luh KT, Tsai SH, Wu HM, et al. Metallo-beta-lactamases in clinical Pseudomonas isolates in Taiwan and identification of VIM-3, a novel variant of the VIM-2 enzyme. Antimicrob Agents Chemother 2001;45:2224-8.  Back to cited text no. 29
Lagatolla C, Tonin EA, Monti-Bragadin C, Dolzani L, Gombac F, Bearzi C, et al. Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-beta-lactamase determinants in European hospital. Emerg Infect Dis 2004;10:535-8.  Back to cited text no. 30
Lagatolla C, Edalucci E, Dolzani L, Riccio ML, De Luca F, Medessi E, et al. Molecular evolution of metallo-beta-lactamase-producing Pseudomonas aeroginosa in a nosocomial seting of high-level endemicity. J Clin Microbiol 2006;44:2348-53.  Back to cited text no. 31
Carvalho MJ, Saavedra MJ, Correia A, Castro AP, Duarte A. Metallo-beta-lactamase in clinical Pseudomonas aeruginosa isolate in a Portuguese hospital and identification of a new VIM-2 like enzyme. Microbiol.and Infect 2005;11:409.  Back to cited text no. 32
Gutiérrez O, Juan C, Cercenado E, Navarro F, Bouza E, Coll P, et al. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother 2007;51:4329-35.  Back to cited text no. 33
Khosravi AD, Mihani F. Detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients in Ahwaz, Iran. Diagn Microbiol Infect Dis 2008;60:125-8.  Back to cited text no. 34
Saderi H, Lotfalipour H, Owlia P, Salimi H. Detection of Metallo-β-Lactamase Producing Pseudomonas aeruginosa Isolated From Burn Patients in Tehran, Iran. Labmedicine 2010;41:609-12.  Back to cited text no. 35