1. |
Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011;378:31-40.
|
2. |
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006;3:e442.
|
3. |
Wang X. Translational Animal Models in Drug Discovery and Development. USA: Agennix Incorporated; 2012.
|
4. |
Etuk EU. Animals models for studying diabetes mellitus. Agr Biol J N Am 2010;1:130-4.
|
5. |
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010;33:62-9.
|
6. |
King AJ. The use of animal models in diabetes research. Br J Pharmacol 2012;166:877-94.
|
7. |
Hau J. Animal models for human diseases. In: Conn PM, editor . Sourcebook of Models for Biomedical Research. New Jersey: Human Press; 2008. p. 3-8.
|
8. |
Hansen K, Khanna C. Spontaneous and genetically engineered animal models; use in preclinical cancer drug development. Eur J Cancer 2004;40:858-80.
|
9. |
Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E. The use of animal models in the study of diabetes mellitus. In Vivo 2009;23:245-58.
|
10. |
Polychronakos C. Animal models of spontaneous autoimmune diabetes: notes on their relevance to the human disease. Curr Diab Rep 2004;4:151-4.
|
11. |
Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 1980;29:1-13.
|
12. |
Mathews CE. Utility of murine models for the study of spontaneous autoimmune type 1 diabetes. Pediatr Diabetes 2005;6:165-77.
|
13. |
Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999;5:601-4.
|
14. |
Giarratana N, Penna G, Adorini L. Animal models of spontaneous autoimmune disease: type 1 diabetes in the nonobese diabetic mouse. Methods Mol Biol 2007;380:285-311.
|
15. |
Mordes JP, Bortell R, Blankenhorn EP, Rossini AA, Greiner DL. Rat models of type 1 diabetes: genetics, environment, and autoimmunity. ILAR J 2004;45:278-91.
|
16. |
Nakhooda AF, Like AA, Chappel CI, Murray FT, Marliss EB. The spontaneously diabetic Wistar rat. Metabolic and morphologic studies. Diabetes 1977;26:100-12.
|
17. |
Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med 2005;22:359-70.
|
18. |
Crisá L, Mordes JP, Rossini AA. Autoimmune diabetes mellitus in the BB rat. Diabetes Metab Rev 1992;8:4-37.
|
19. |
Jun HS, Yoon JW. A new look at viruses in type 1 diabetes. Diabetes Metab Res Rev 2003;19:8-31.
|
20. |
Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. New inbred strain of Long-Evans Tokushima lean rats with IDDM without lymphopenia. Diabetes 1991;40:1375-81.
|
21. |
Komeda K, Noda M, Terao K, Kuzuya N, Kanazawa M, Kanazawa Y. Establishment of two substrains, diabetes-prone and non-diabetic, from Long-Evans Tokushima Lean (LETL) rats. Endocr J 1998;45:737-44.
|
22. |
Yokoi N, Namae M, Fuse M, Wang HY, Hirata T, Seino S, et al. Establishment and characterization of the Komeda diabetes-prone rat as a segregating inbred strain. Exp Anim 2003;52:295-301.
|
23. |
Yokoi N, Komeda K, Wang HY, Yano H, Kitada K, Saitoh Y, et al. Cblb is a major susceptibility gene for rat type 1 diabetes mellitus. Nat Genet 2002;31:391-4.
|
24. |
Yokoi N, Hayashi C, Fujiwara Y, Wang HY, Seino S. Genetic reconstitution of autoimmune type 1 diabetes with two major susceptibility genes in the rat. Diabetes 2007;56:506-12.
|
25. |
Lenzen S, Tiedge M, Elsner M, Lortz S, Weiss H, Jörns A, et al. The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia 2001;44:1189-96.
|
26. |
Jörns A, Günther A, Hedrich HJ, Wedekind D, Tiedge M, Lenzen S. Immune cell infiltration, cytokine expression, and beta-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes 2005;54:2041-52.
|
27. |
Dufrane D, van Steenberghe M, Guiot Y, Goebbels RM, Saliez A, Gianello P. Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 transporter and beta-cell plasticity. Transplantation 2006;81:36-45.
|
28. |
Bansal R, Ahmad N, Kidwai JR. Alloxan-glucose interaction: effect on incorporation of 14C-leucine into pancreatic islets of rat. Acta Diabetol Lat 1980;17:135-43.
|
29. |
Federiuk IF, Casey HM, Quinn MJ, Wood MD, Ward WK. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comp Med 2004;54:252-7.
|
30. |
Jederström G, Gråsjö, Nordin A, Sjöholm I, Andersson A. Blood glucose-lowering activity of a hyaluronan-insulin complex after oral administration to rats with diabetes. Diabetes Technol Ther 2005;7:948-57.
|
31. |
Sheshala R, Peh KK, Darwis Y. Preparation, characterization, and in vivo evaluation of insulin-loaded PLA-PEG microspheres for controlled parenteral drug delivery. Drug Dev Ind Pharm 2009;35:1364-74.
|
32. |
Jansson L, Eizirik DL, Pipeleers DG, Borg LA, Hellerström C, Andersson A. Impairment of glucose-induced insulin secretion in human pancreatic islets transplanted to diabetic nude mice. J Clin Invest 1995;96:721-6.
|
33. |
Graham ML, Janecek JL, Kittredge JA, Hering BJ, Schuurman HJ. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp Med 2011;61:356-60.
|
34. |
Makhlouf L, Duvivier-Kali VF, Bonner-Weir S, Dieperink H, Weir GC, Sayegh MH. Importance of hyperglycemia on the primary function of allogeneic islet transplants. Transplantation 2003;76:657-64.
|
35. |
Lee JH, Yang SH, Oh JM, Lee MG. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol 2010;62:1-23.
|
36. |
Bono VH Jr. Review of mechanism of action studies of the nitrosoureas. Cancer Treat Rep 1976;60:699-702.
|
37. |
Sandler S, Swenne I. Streptozotocin, but not alloxan, induces DNA repair synthesis in mouse pancreatic islets in vitro. Diabetologia 1983;25:444-7.
|
38. |
Steiner H, Oelz O, Zahnd G, Foresch ER. Studies on islet cell regeneration, hyperplasia and intrainsular cellular interrelations in long lasting streptozotocin diabetes in rats. Diabetologia 1970;6:558-64.
|
39. |
Yamagami T, Miwa A, Takasawa S, Yamamoto H, Okamoto H. Induction of rat pancreatic B-cell tumors by the combined administration of streptozotocin or alloxan and poly (adenosine diphosphate ribose) synthetase inhibitors. Cancer Res 1985;45:1845-9.
|
40. |
Iwase M, Nunoi K, Wakisaka M, Kikuchi M, Maki Y, Sadoshima S, et al. Spontaneous recovery from non-insulin-dependent diabetes mellitus induced by neonatal streptozotocin treatment in spontaneously hypertensive rats. Metabolism 1991;40:10-4.
|
41. |
Kazumi T, Yoshino G, Fujii S, Baba S. Tumorigenic action of streptozotocin on the pancreas and kidney in male Wistar rats. Cancer Res 1978;38:2144-7.
|
42. |
Rerup CC. Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol Rev 1970;22:485-518.
|
43. |
Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 1976;193:415-7.
|
44. |
Wang Z, Gleichmann H. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 1998;47:50-6.
|
45. |
Lukic ML, Stosic-Grujicic S, Shahin A. Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev Immunol 1998;6:119-28.
|
46. |
Reddy S, Wu D, Elliott RB. Low dose streptozotocin causes diabetes in severe combined immunodeficient (SCID) mice without immune cell infiltration of the pancreatic islets. Autoimmunity 1995;20:83-92.
|
47. |
Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008;51:216-26.
|
48. |
Nerup J, Mandrup-Poulsen T, Helqvist S, Andersen HU, Pociot F, Reimers JI, et al. On the pathogenesis of IDDM. Diabetologia 1994;37 Suppl 2:S82-9.
|
49. |
Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001;50:537-46.
|
50. |
Malaisse WJ, Malaisse-Lagae F, Sener A, Pipeleers DG. Determinants of the selective toxicity of alloxan to the pancreatic B cell. Proc Natl Acad Sci U S A 1982;79:927-30.
|
51. |
Mathews CE, Leiter EH. Constitutive differences in antioxidant defense status distinguish alloxan-resistant and alloxan-susceptible mice. Free Radic Biol Med 1999;27:449-55.
|
52. |
im Walde SS, Dohle C, Schott-Ohly P, Gleichmann H. Molecular target structures in alloxan-induced diabetes in mice. Life Sci 2002;71:1681-94.
|
53. |
Kim HR, Rho HW, Park BH, Park JW, Kim JS, Kim UH, et al. Role of Ca2+in alloxan-induced pancreatic beta-cell damage. Biochim Biophys Acta 1994;1227:87-91.
|
54. |
Wang J, Wan R, Mo Y, Zhang Q, Sherwood LC, Chien S. Creating a long-term diabetic rabbit model. Exp Diabetes Res 2010;2010:289614.
|
55. |
Finch SC, Finch CA. Idiopathic hemochromatosis, an iron storage disease. A. Iron metabolism in hemochromatosis. Medicine (Baltimore) 1955;34:381-430.
|
56. |
Awai M, Narasaki M, Yamanoi Y, Seno S. Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol 1979;95:663-73.
|
57. |
Hansen WA, Christie MR, Kahn R, Norgaard A, Abel I, Petersen AM, et al. Supravital dithizone staining in the isolation of human and rat pancreatic islets. Diabetes Res 1989;10:53-7.
|
58. |
Goldberg ED, Eshchenko VA, Bovt VD. The diabetogenic and acidotropic effects of chelators. Exp Pathol 1991;42:59-64.
|
59. |
Yoon JW, London WT, Curfman BL, Brown RL, Notkins AL. Coxsackie virus B4 produces transient diabetes in nonhuman primates. Diabetes 1986;35:712-6.
|
60. |
Jaïdane H, Sané F, Gharbi J, Aouni M, Romond MB, Hober D. Coxsackievirus B4 and type 1 diabetes pathogenesis: contribution of animal models. Diabetes Metab Res Rev 2009;25:591-603.
|
61. |
Craighead JE, McLane MF. Diabetes mellitus: induction in mice by encephalomyocarditis virus. Science 1968;162:913-4.
|
62. |
Baek HS, Yoon JW. Direct involvement of macrophages in destruction of beta-cells leading to development of diabetes in virus-infected mice. Diabetes 1991;40:1586-97.
|
63. |
Guberski DL, Thomas VA, Shek WR, Like AA, Handler ES, Rossini AA, et al. Induction of type I diabetes by Kilham's rat virus in diabetes-resistant BB/Wor rats. Science 1991;254:1010-3.
|
64. |
Ellerman KE, Richards CA, Guberski DL, Shek WR, Like AA. Kilham rat triggers T-cell-dependent autoimmune diabetes in multiple strains of rat. Diabetes 1996;45:557-62.
|
65. |
Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 1991;65:319-31.
|
66. |
Yoon JW, Onodera T, Notkins AL. Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4. J Exp Med 1978;148:1068-80.
|
67. |
Lin JH. Applications and limitations of genetically modified mouse models in drug discovery and development. Curr Drug Metab 2008;9:419-38.
|
68. |
Available from: http://www.apps.nhlbi.nih.gov/transgenic/default.htm. [Last accessed on 2013 Mar 15].
|
69. |
Mathews CE, Langley SH, Leiter EH. New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation 2002;73:1333-6.
|
70. |
Chen H, Zheng C, Zhang X, Li J, Li J, Zheng L, et al. Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides 2011;32:1634-9.
|
71. |
Jun H, Bae HY, Lee BR, Koh KS, Kim YS, Lee KW, et al. Pathogenesis of non-insulin-dependent (type II) diabetes mellitus (NIDDM) - Genetic predisposition and metabolic abnormalities. Adv Drug Deliv Rev 1999;35:157-77.
|
72. |
Yap IS, Giddings G, Pocock E, Chantler JK. Lack of islet neogenesis plays a key role in beta-cell depletion in mice infected with a diabetogenic variant of coxsackievirus B4. J Gen Virol 2003;84:3051-68.
|
73. |
Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F, Lyzogubov VV, et al. The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 2006;55:3335-43.
|
74. |
Coleman DL. A historical perspective on leptin. Nat Med 2010;16:1097-9.
|
75. |
Bell RH Jr, Hye RJ. Animal models of diabetes mellitus: physiology and pathology. J Surg Res 1983;35:433-60.
|
76. |
Bates SH, Kulkarni RN, Seifert M, Myers MG Jr. Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis. Cell Metab 2005;1:169-78.
|
77. |
Berglund O, Frankel BJ, Hellman B. Development of the insulin secretory defect in genetically diabetic (db/db) mouse. Acta Endocrinol (Copenh) 1978;87:543-51.
|
78. |
Nakamura M, Yamada K. Studies on a diabetic (KK) strain of the mouse. Diabetologia 1967;3:212-21.
|
79. |
Ikeda H. KK mouse. Diabetes Res Clin Pract 1994;24 Suppl: S313-6.
|
80. |
Reddi AS, Camerini-Davalos RA. Hereditary diabetes in the KK mouse: an overview. Adv Exp Med Biol 1988;246:7-15.
|
81. |
Lenzen S, Panten U. Alloxan: history and mechanism of action. Diabetologia 1988;31:337-42.
|
82. |
Ramarao P, Kaul CL. Insulin resistance: current therapeutic approaches. Drugs Today (Barc) 1999;35:895-911.
|
83. |
Kato H, Ohue M, Kato K, Nomura A, Toyosawa K, Furutani Y, et al. Mechanism of amelioration of insulin resistance by beta3-adrenoceptor agonist AJ-9677 in the KK-Ay/Ta diabetic obese mouse model. Diabetes 2001;50:113-22.
|
84. |
Diani AR, Sawada G, Wyse B, Murray FT, Khan M. Pioglitazone preserves pancreatic islet structure and insulin secretory function in three murine models of type 2 diabetes. Am J Physiol Endocrinol Metab 2004;286:E116-22.
|
85. |
Shafrir E, Ziv E. A useful list of spontaneously arising animal models of obesity and diabetes. Am J Physiol Endocrinol Metab 2009;296:E1450-2.
|
86. |
Haskell BD, Flurkey K, Duffy TM, Sargent EE, Leiter EH. The diabetes-prone NZO/HlLt strain. I. Immunophenotypic comparison to the related NZB/BlNJ and NZW/LacJ strains. Lab Invest 2002;82:833-42.
|
87. |
Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci U S A 1997;94:8878-83.
|
88. |
Leiter EH, Reifsnyder PC. Differential levels of diabetogenic stress in two new mouse models of obesity and type 2 diabetes. Diabetes 2004;53 Suppl 1:S4-11.
|
89. |
Fang RC, Kryger ZB, Buck DW 2 nd , De la Garza M, Galiano RD, Mustoe TA. Limitations of the db/db mouse in translational wound healing research: Is the NONcNZO10 polygenic mouse model superior? Wound Repair Regen 2010;18:605-13.
|
90. |
Cho YR, Kim HJ, Park SY, Ko HJ, Hong EG, Higashimori T, et al. Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. Am J Physiol Endocrinol Metab 2007;293:E327-36.
|
91. |
Suzuki W, Iizuka S, Tabuchi M, Funo S, Yanagisawa T, Kimura M, et al. A new mouse model of spontaneous diabetes derived from ddY strain. Exp Anim 1999;48:181-9.
|
92. |
Miura T, Suzuki W, Ishihara E, Arai I, Ishida H, Seino Y, et al. Impairment of insulin-stimulated GLUT4 translocation in skeletal muscle and adipose tissue in the Tsumura Suzuki obese diabetic mouse: a new genetic animal model of type 2 diabetes. Eur J Endocrinol 2001;145:785-90.
|
93. |
Allan MF, Eisen EJ, Pomp D. The M16 mouse: an outbred animal model of early onset polygenic obesity and diabesity. Obes Res 2004;12:1397-407.
|
94. |
Augstein P, Salzsieder E. Morphology of pancreatic islets: a time course of pre-diabetes in Zucker fatty rats. Methods Mol Biol 2009;560:159-89.
|
95. |
Frisbee JC. Hypertension-independent microvascular rarefaction in the obese Zucker rat model of the metabolic syndrome. Microcirculation 2005;12:383-92.
|
96. |
McIntosh CH, Pederson RA. Non-insulin dependent animalmodels of diabetes mellitus. In: McNeil JH, editor. Experimental Models of Diabetes. Florida, USA: CRC Press LLC; 1999. p. 337-98.
|
97. |
Michaelis OE 4 th , Patrick DH, Hansen CT, Canary JJ, Werner RM, Carswell N. Insulin-independent diabetes mellitus (type II). Spontaneous hypertensive/NIH-corpulent rat. Am J Pathol 1986;123:398-400.
|
98. |
Russel JC, Kelly SE, Proctor S. The JCR: LA-cp rat: animal model of the metabolic syndrome exhibiting micro-and macromolecular disease. In: Shafrir E, editor. Animal Models of Diabetes, Frontiers in Research. Boca Raton, FL: CRC Press; 2007. p. 159-83.
|
99. |
Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 1992;41:1422-8.
|
100. |
Zhu M, Noma Y, Mizuno A, Sano T, Shima K. Poor capacity for proliferation of pancreatic beta-cells in Otsuka-Long-Evans-Tokushima Fatty rat: a model of spontaneous NIDDM. Diabetes 1996;45:941-6.
|
101. |
Kosegawa I, Chen S, Awata T, Negishi K, Katayama S. Troglitazone and metformin, but not glibenclamide, decrease blood pressure in Otsuka Long Evans Tokushima Fatty rats. Clin Exp Hypertens 1999;21:199-211.
|
102. |
Weksler-Zangen S, Yagil C, Zangen DH, Ornoy A, Jacob HJ, Yagil Y. The newly inbred cohen diabetic rat: a nonobese normolipidemic genetic model of diet-induced type 2 diabetes expressing sex differences. Diabetes 2001;50:2521-9.
|
103. |
Wechsler-Zangen S, Orlanski E, Zangen DH. Cohen diabetic rat. In: Shafrir E, editor. Animal Models of Diabetes, Frontiers in Research. Boca Raton, FL: CRC Press; 2007. p. 323-34.
|
104. |
Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 1976;119:85-90.
|
105. |
Picarel-Blanchot F, Berthelier C, Bailbé D, Portha B. Impaired insulin secretion and excessive hepatic glucose production are both early events in the diabetic GK rat. Am J Physiol 1996;271:E755-62.
|
106. |
Shinohara M, Masuyama T, Shoda T, Takahashi T, Katsuda Y, Komeda K, et al. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res 2000;1:89-100.
|
107. |
Shinohara M. Establishment and clinical features in spontaneously diabetic Torii rat. Open Diabetes J 2011;4:18-20.
|
108. |
Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res 2007;125:451-72. [ PUBMED]
|
109. |
Mathews CE, Bagley R, Leiter EH. ALS/Lt: a new type 2 diabetes mouse model associated with low free radical scavenging potential. Diabetes 2004;53 Suppl 1:S125-9.
|
110. |
Reed MJ, Scribner KA. In-vivo and in-vitro models of type 2 diabetes in pharmaceutical drug discovery. Diabetes Obes Metab 1999;1:75-86.
|
111. |
Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 1998;47:224-9.
|
112. |
Larsen MO, Wilken M, Gotfredsen CF, Carr RD, Svendsen O, Rolin B. Mild streptozotocin diabetes in the Göttingen minipig. A novel model of moderate insulindeficiency and diabetes. Am J Physiol Endocrinol Metab 2002;282:E1342-51.
|
113. |
Kasiviswanath R, Ramesh A, Kumar KE. Hypoglycemic and antihyperglycemic effect of Gmelina asiatica LINN. in normal and in alloxan induced diabetic rats. Biol Pharm Bull 2005;28:729-32.
|
114. |
Le Marchand-Brustel Y. Molecular mechanisms of insulin action in normal and insulin-resistant states. Exp Clin Endocrinol Diabetes 1999;107:126-32.
|
115. |
Le Marchand-Brustel Y, Jeanrenaud B, Freychet P. Insulin binding and effects in isolated soleus muscle of lean and obese mice. Am J Physiol 1978;234:E348-58.
|
116. |
Karasawa H, Takaishi K, Kumagae Y. Obesity-induced diabetes in mouse strains treated with gold thioglucose: a novel animal model for studying ß-cell dysfunction. Obesity (Silver Spring) 2011;19:514-21.
|
117. |
Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 1983;71:1544-53.
|
118. |
Choi SB, Park CH, Choi MK, Jun DW, Park S. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci Biotechnol Biochem 2004;68:2257-64.
|
119. |
Luft R. Oskar Minkowski: discovery of the pancreatic origin of diabetes, 1889. Diabetologia 1989;32:399-401.
|
120. |
Kurup S, Bhonde RR. Combined effect of nicotinamide and streptozotocin on diabetic status in partially pancreatectomized adult BALB/c mice. Horm Metab Res 2000;32:330-4.
|
121. |
Shafrir E, Ziv E, Kalman R. Nutritionally induced diabetes in desert rodents as models of type 2 diabetes: Acomys cahirinus (spiny mice) and Psammomys obesus (desert gerbil). ILAR J 2006;47:212-24.
|
122. |
Noda K, Melhorn MI, Zandi S, Frimmel S, Tayyari F, Hisatomi T, et al. An animal model of spontaneous metabolic syndrome: Nile grass rat. FASEB J 2010;24:2443-53.
|
123. |
Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 1988;37:1163-7.
|
124. |
Heled Y, Shapiro Y, Shani Y, Moran DS, Langzam L, Braiman L, et al. Physical exercise prevents the development of type 2 diabetes mellitus in Psammomys obesus. Am J Physiol Endocrinol Metab 2002;282:E370-5.
|
125. |
Coscun T, Chen Y, Sindelar D, Heiman M. Animal models to study obesity and type 2 diabetes induced by diet. In: Shafrir E, editor. Animal Models of Diabetes, Frontiers of Research. Boca Raton, FL: CRC Press; 2007. p. 349-57.
|
126. |
Ziv E, Shafrir E, Kalman R, Galer S, Bar-On H. Changing pattern of prevalence of insulin resistance in Psammomys obesus, a model of nutritionally induced type 2 diabetes. Metabolism 1999;48:1549-54.
|
127. |
Marquié G, Hadjiisky P, Arnaud O, Duhault J. Development of macroangiopathy in sand rats ( Psammomys obesus), an animal model of non-insulin-dependent diabetes mellitus: effect of gliclazide. Am J Med 1991 24;90:55S-61.
|
128. |
Matveyenko AV, Butler PC. Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J 2006;47:225-33.
|
129. |
Matveyenko AV, Gurlo T, Daval M, Butler AE, Butler PC. Successful versus failed adaptation to high-fat diet-induced insulin resistance: the role of IAPP-induced beta-cell endoplasmic reticulum stress. Diabetes 2009;58:906-16.
|
130. |
Ueda H, Ikegami H, Yamato E, Fu J, Fukuda M, Shen G, et al. The NSY mouse: a new animal model of spontaneous NIDDM with moderate obesity. Diabetologia 1995;38:503-8.
|
131. |
Henson MS, O'Brien TD. Feline models of type 2 diabetes mellitus. ILAR J 2006;47:234-42.
|
132. |
Hansen BC, Tigno XF. The rhesus monkey ( Macaca mulatta) manifestsall the features of human type 2 diabetes. In: Shafrir E, editor. Animal Models of Diabetes, Frontiers in Research. Boca Raton, FL: CRC Press; 2007. p. 251-70.
|
133. |
Kim SY, Johnson MA, McLeod DS, Alexander T, Hansen BC, Lutty GA. Neutrophils are associated with capillary closure in spontaneously diabetic monkey retinas. Diabetes 2005;54:1534-42.
|
134. |
Tsukasa H, Kazuya K, Masao K, Yuichi S. Non-insulin-dependent diabetic rat. EP0491396; 1992.
|
135. |
Jongil K, Soonhee K, Jeongsun S. A transgenic nonhuman animal model for diabetes. EP 0712930; 1996.
|
136. |
Walter CS, Maynard DC, David KK. Transgenic animal models for type II diabetes mellitus. US6187991; 2001.
|
137. |
Luthman LH, Joakim LG. Congenic animal models of non-insulin dependent diabetes mellitus. EP1228094; 2002.
|
138. |
Fumitoshi I, Naoki M, Tomoko I, Minesuke Y, Shigeharu W. Mammalian model for diabetes. US 20040128707; 2004.
|
139. |
Helena E, Rubins N, Steneberg P, Michael DW. New diabetes type 2 animal model. EP1659860; 2006.
|
140. |
Rebecca ST, Edward HK, Joan FF, Dennis LG. Non-human animal models for diabetic complications and their uses. WO2006021006; 2006.
|
141. |
Lernmark A, Niklasson B. Diabetes model. EP1432990; 2008.
|
142. |
Hiromichi Y, Kunie M, Hiroshi S, Kenji K. Diabetes model animal. US20090217394; 2009.
|
143. |
Hitoshi S, Nobuhiro Y. Nonhuman transgenic animal as type 2 diabetes model. US20090320147; 2009.
|
144. |
Itsuki O, Masahiko S, Susumu M. Production of congenic mouse model of human type 2 diabetes. JP4588808; 2010.
|
145. |
Chengxin S, Yuying F, Xinzhi L. A vertical type 2 diabetes mellitus the animal model claims a method for the screening of reducing blood sugar application in the medicine CN102812921; 2012.
|
146. |
Chen Y, Cheng J, Lu Y, Liu J, Li Xi, Yang G, et al. A method for preparing rhesus non insulin dependent diabetes mellitus model. CN103314925; 2013.
|
147. |
Wang X, Hai C. High selenium-induced insulin resistance animal models, its application and construction method. CN103211834; 2013.
|
148. |
Danilova IG, Gette IF, Bulavintseva TS. Method for simulating alloxan diabetes. RU2534411; 2014.
|
149. |
Yang S, Kong S, Ruan J, Xin L, Li K. Diabetes mouse model using gene HSD11B1, CHOP and IAPP expression vectors. CN103966243; 2014.
|
150. |
Lan G, Yang H, Jiang Q, Guo Y, Chen J, Liang J. A method for preparing model of mini pig with non insulin dependent diabetes mellitus. CN103858820; 2014.
|
151. |
Schuele R, Duteil D, Metzger E, Guenther T. Animal models for type 2 diabetes and obesity having reduced LSD1 expression as well as transgenic animals over expressing human LSD1 gene. WO2014068033; 2014.
|
152. |
Eldridge JA, Campaigne WC. Diabetic animal model for diabetes research. WO 2014028737; 2014.
|