Conventional, molecular methods and biomarkers molecules in detection of septicemia

Authors

1 Brucellosis Research Center; Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

2 Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Sepsis is a leading cause of morbidity and mortality in hospitalized patients worldwide and based on studies, 30-40% of all cases of severe sepsis and septic shock results from the blood stream infections (BSIs). Identifying of the disease, performing laboratory tests, and consequently treatment are factors that required for optimum management of BSIs. In addition, applying precise and immediate identification of the etiologic agent is a prerequisite for specific antibiotic therapy of pathogen and thereby decreasing mortality rates. The diagnosis of sepsis is difficult because clinical signs of sepsis often overlap with other noninfectious cases of systemic inflammation. BSIs are usually diagnosed by performing a series of techniques such as blood cultures, polymerase chain reaction-based methods, and biomarkers of sepsis. Extremely time-consuming even to take up to several days is a major limitation of conventional methods. In addition, yielding false-negative results due to fastidious and slow-growing microorganisms and also in case of antibiotic pretreated samples are other limitations. In comparison, molecular methods are capable of examining a blood sample obtained from suspicious patient with BSI and gave the all required information to prescribing antimicrobial therapy for detected bacterial or fungal infections immediately. Because of an emergency of sepsis, new methods are being developed. In this review, we discussed about the most important sepsis diagnostic methods and numbered the advantage and disadvantage of the methods in detail.

Keywords

1.
Von Paula GF. The Hippocrates Zweyten eighth medical writings: Aubersetzt into German: With an alphabetic index of rates and matters; a paperback book for young doctors. Lentner; 1814.  Back to cited text no. 1
    
2.
Peters RP, van Agtmael MA, Danner SA, Savelkoul PH, Vandenbroucke-Grauls CM. New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 2004;4:751-60.  Back to cited text no. 2
    
3.
Riedel S, Carroll KC. Laboratory detection of sepsis: Biomarkers and molecular approaches. Clin Lab Med 2013;33:413-37.  Back to cited text no. 3
    
4.
Seifert H. The clinical importance of microbiological findings in the diagnosis and management of bloodstream infections. Clin Infect Dis 2009;48 Suppl 4:S238-45.  Back to cited text no. 4
    
5.
Barnes PD, Marr KA. Risks, diagnosis and outcomes of invasive fungal infections in haematopoietic stem cell transplant recipients. Br J Haematol 2007;139:519-31.  Back to cited text no. 5
    
6.
Zaoutis TE, Heydon K, Chu JH, Walsh TJ, Steinbach WJ. Epidemiology, outcomes, and costs of invasive aspergillosis in immunocompromised children in the United States, 2000. Pediatrics 2006;117:e711-6.  Back to cited text no. 6
    
7.
Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009;136:1237-48.  Back to cited text no. 7
    
8.
Garnacho-Montero J, Ortiz-Leyba C, Herrera-Melero I, Aldabó-Pallás T, Cayuela-Dominguez A, Marquez-Vacaro JA, et al. Mortality and morbidity attributable to inadequate empirical antimicrobial therapy in patients admitted to the ICU with sepsis: A matched cohort study. J Antimicrob Chemother 2008;61:436-41.  Back to cited text no. 8
    
9.
Fenollar F, Raoult D. Molecular diagnosis of bloodstream infections caused by non-cultivable bacteria. Int J Antimicrob Agents 2007;30:7-15.  Back to cited text no. 9
    
10.
Fujita S, Senda Y, Iwagami T, Hashimoto T. Rapid identification of staphylococcal strains from positive-testing blood culture bottles by internal transcribed spacer PCR followed by microchip gel electrophoresis. J Clin Microbiol 2005;43:1149-57.  Back to cited text no. 10
    
11.
Klouche M, Schröder U. Rapid methods for diagnosis of bloodstream infections. Clin Chem Lab Med 2008;46:888-908.  Back to cited text no. 11
    
12.
Panacek EA, Kaul M. IL-6 as a marker of excessive TNF-α activity in sepsis. Sepsis 1999;3:65-73.  Back to cited text no. 12
    
13.
Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003;348:1546-54.  Back to cited text no. 13
    
14.
Engel C, Brunkhorst FM, Bone HG, Brunkhorst R, Gerlach H, Grond S, et al. Epidemiology of sepsis in Germany: Results from a national prospective multicenter study. Intensive Care Med 2007;33:606-18.  Back to cited text no. 14
    
15.
Glauser MP, Zanetti G, Baumgartner JD, Cohen J. Septic shock: Pathogenesis. Lancet 1991;338:732-6.  Back to cited text no. 15
    
16.
Bates DW, Pruess KE, Lee TH. How bad are bacteremia and sepsis? Outcomes in a cohort with suspected bacteremia. Arch Intern Med 1995;155:593-8.  Back to cited text no. 16
    
17.
Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001;29:1303-10.  Back to cited text no. 17
    
18.
Magadia RR, Weinstein MP. Laboratory diagnosis of bacteremia and fungemia. Infect Dis Clin North Am 2001;15:1009-24.  Back to cited text no. 18
    
19.
Weinstein MP, Towns ML, Quartey SM, Mirrett S, Reimer LG, Parmigiani G, et al. The clinical significance of positive blood cultures in the 1990s: A prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis 1997;24:584-602.  Back to cited text no. 19
    
20.
Zaragoza R, Artero A, Camarena JJ, Sancho S, González R, Nogueira JM. The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect 2003;9:412-8.  Back to cited text no. 20
    
21.
Bates DW, Lee TH. Rapid classification of positive blood cultures. Prospective validation of a multivariate algorithm. JAMA 1992;267:1962-6.  Back to cited text no. 21
    
22.
Weinstein MP. Blood culture contamination: Persisting problems and partial progress. J Clin Microbiol 2003;41:2275-8.  Back to cited text no. 22
    
23.
Calfee DP, Farr BM. Comparison of four antiseptic preparations for skin in the prevention of contamination of percutaneously drawn blood cultures: A randomized trial. J Clin Microbiol 2002;40:1660-5.  Back to cited text no. 23
    
24.
Schifman RB, Strand CL, Meier FA, Howanitz PJ. Blood culture contamination: A College of American Pathologists Q-Probes study involving 640 institutions and 497134 specimens from adult patients. Arch Pathol Lab Med 1998;122:216-21.  Back to cited text no. 24
    
25.
Tokars JI. Predictive value of blood cultures positive for coagulase-negative staphylococci: Implications for patient care and health care quality assurance. Clin Infect Dis 2004;39:333-41.  Back to cited text no. 25
    
26.
Li J, Plorde JJ, Carlson LG. Effects of volume and periodicity on blood cultures. J Clin Microbiol 1994;32:2829-31.  Back to cited text no. 26
    
27.
Dorn GL, Burson GG, Haynes JR. Blood culture technique based on centrifugation: Clinical evaluation. J Clin Microbiol 1976;3:258-63.  Back to cited text no. 27
    
28.
Kennaugh JK, Gregory WW, Powell KR, Hendley JO. The effect of dilution during culture on detection of low concentrations of bacteria in blood. Pediatr Infect Dis 1984;3:317-8.  Back to cited text no. 28
    
29.
Paisley JW, Lauer BA. Pediatric blood cultures. Clin Lab Med 1994;14:17-30.  Back to cited text no. 29
    
30.
Wilson ML. Principles and Procedures for Blood Cultures: Approved Guideline. CLSI document M47-A Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2007.  Back to cited text no. 30
    
31.
Wilson ML, Mirrett S, Reller LB, Weinstein MP, Reimer LG. Recovery of clinically important microorganisms from the BacT/Alert blood culture system does not require testing for seven days. Diagn Microbiol Infect Dis 1993;16:31-4.  Back to cited text no. 31
    
32.
Diekema DJ, Beekmann SE, Chapin KC, Morel KA, Munson E, Doern GV. Epidemiology and outcome of nosocomial and community-onset bloodstream infection. J Clin Microbiol 2003;41:3655-60.  Back to cited text no. 32
    
33.
Dorsher CW, Rosenblatt JE, Wilson WR, Ilstrup DM. Anaerobic bacteremia: Decreasing rate over a 15-year period. Rev Infect Dis 1991;13:633-6.  Back to cited text no. 33
    
34.
Morris AJ, Wilson ML, Mirrett S, Reller LB. Rationale for selective use of anaerobic blood cultures. J Clin Microbiol 1993;31:2110-3.  Back to cited text no. 34
    
35.
Hecht DW. Anaerobes: Antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe 2006;12:115-21.  Back to cited text no. 35
    
36.
Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev 2006;19:788-802.  Back to cited text no. 36
    
37.
Brown E, Wenzel RP, Hendley JO. Exploration of the microbial anatomy of normal human skin by using plasmid profiles of coagulase-negative staphylococci: Search for the reservoir of resident skin flora. J Infect Dis 1989;160:644-50.  Back to cited text no. 37
    
38.
Selwyn S, Ellis H. Skin bacteria and skin disinfection reconsidered. Br Med J 1972;1:136-40.  Back to cited text no. 38
    
39.
Fazzeli H, Arabestani MR, Esfahani BN, Khorvash F, Pourshafie MR, Moghim S, et al. A new multiplex polymerase chain reaction assay for the identification a panel of bacteria involved in bacteremia. Adv Biomed Res 2013;2:7.  Back to cited text no. 39
[PUBMED]  Medknow Journal  
40.
Gray MW, Sankoff D, Cedergren RJ. On the evolutionary descent of organisms and organelles: A global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res 1984;12:5837-52.  Back to cited text no. 40
    
41.
Turenne CY, Witwicki E, Hoban DJ, Karlowsky JA, Kabani AM. Rapid identification of bacteria from positive blood cultures by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 2000;38:513-20.  Back to cited text no. 41
    
42.
Gauduchon V, Chalabreysse L, Etienne J, Célard M, Benito Y, Lepidi H, et al. Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J Clin Microbiol 2003;41:763-6.  Back to cited text no. 42
    
43.
Song JH, Cho H, Park MY, Na DS, Moon HB, Pai CH. Detection of Salmonella typhi in the blood of patients with typhoid fever by polymerase chain reaction. J Clin Microbiol 1993;31:1439-43.  Back to cited text no. 43
    
44.
Folgueira L, Delgado R, Palenque E, Aguado JM, Noriega AR. Rapid diagnosis of Mycobacterium tuberculosis bacteremia by PCR. J Clin Microbiol 1996;34:512-5.  Back to cited text no. 44
    
45.
Sánchez-Jiménez MM, Cardona-Castro N. Validation of a PCR for diagnosis of typhoid fever and salmonellosis by amplification of the hilA gene in clinical samples from Colombian patients. J Med Microbiol 2004;53:875-8.  Back to cited text no. 45
    
46.
Arabestani MR, Fazzeli H, Nasr Esfahani B. Identification of the most common pathogenic bacteria in patients with suspected sepsis by multiplex PCR. J Infect Dev Ctries 2014;8:461-8.  Back to cited text no. 46
    
47.
Fazzeli H, Arabestani MR, Esfahani BN, Khorvash F, Pourshafie MR, Moghim S, et al. Development of PCR-based method for detection of Enterobacteriaceae in septicemia. J Res Med Sci 2012;17:671-5.  Back to cited text no. 47
[PUBMED]  Medknow Journal  
48.
Peters RP, van Agtmael MA, Gierveld S, Danner SA, Groeneveld AB, Vandenbroucke-Grauls CM, et al. Quantitative detection of Staphylococcus aureus and Enterococcus faecalis DNA in blood to diagnose bacteremia in patients in the intensive care unit. J Clin Microbiol 2007;45:3641-6.  Back to cited text no. 48
    
49.
Heininger A, Binder M, Schmidt S, Unertl K, Botzenhart K, Döring G. PCR and blood culture for detection of Escherichia coli bacteremia in rats. J Clin Microbiol 1999;37:2479-82.  Back to cited text no. 49
    
50.
Arabestani MR, Fazzeli H, Esfahani BN, Alikhani MY. Development and assessment of a single tube internally controlled multiplex PCR assay to detect different pathogenic bacteria involved in blood stream infections. Int J Entric Pathog 2013;1:22-7.  Back to cited text no. 50
    
51.
Colburn WA, DeGruttola VG, DeMets DL. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Biomarkers Definitions Working Group. Clin Pharmacol Ther 2001;69:89-95.  Back to cited text no. 51
    
52.
Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine 1992. Chest 2009;136:e28.  Back to cited text no. 52
    
53.
Circiumaru B, Baldock G, Cohen J. A prospective study of fever in the intensive care unit. Intensive Care Med 1999;25:668-73.  Back to cited text no. 53
    
54.
Jaye DL, Waites KB. Clinical applications of C-reactive protein in pediatrics. Pediatr Infect Dis J 1997;16:735-46.  Back to cited text no. 54
    
55.
Benzaquen LR, Yu H, Rifai N. High sensitivity C-reactive protein: An emerging role in cardiovascular risk assessment. Crit Rev Clin Lab Sci 2002;39:459-97.  Back to cited text no. 55
    
56.
Dev D, Wallace E, Sankaran R, Cunniffe J, Govan JR, Wathen CG, et al. Value of C-reactive protein measurements in exacerbations of chronic obstructive pulmonary disease. Respir Med 1998;92:664-7.  Back to cited text no. 56
    
57.
Shaw AC. Serum C-reactive protein and neopterin concentrations in patients with viral or bacterial infection. J Clin Pathol 1991;44:596-9.  Back to cited text no. 57
    
58.
Eriksson S, Granström L, Olander B, Wretlind B. Sensitivity of interleukin-6 and C-reactive protein concentrations in the diagnosis of acute appendicitis. Eur J Surg 1995;161:41-5.  Back to cited text no. 58
    
59.
Sexton PM, Christopoulos G, Christopoulos A, Nylen ES, Snider RH Jr, Becker KL. Procalcitonin has bioactivity at calcitonin receptor family complexes: Potential mediator implications in sepsis. Crit Care Med 2008;36:1637-40.  Back to cited text no. 59
    
60.
Linscheid P, Seboek D, Nylen ES, Langer I, Schlatter M, Becker KL, et al. In vitro and in vivo calcitonin I gene expression in parenchymal cells: A novel product of human adipose tissue. Endocrinology 2003;144:5578-84.  Back to cited text no. 60
    
61.
Becker KL, Nylén ES, White JC, Müller B, Snider RH Jr. Clinical review 167: Procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: A journey from calcitonin back to its precursors. J Clin Endocrinol Metab 2004;89:1512-25.  Back to cited text no. 61
    
62.
Schumann RR, Zweigner J. A novel acute-phase marker: Lipopolysaccharide binding protein (LBP). Clin Chem Lab Med 1999;37:271-4.  Back to cited text no. 62
    
63.
Wan Y, Freeswick PD, Khemlani LS, Kispert PH, Wang SC, Su GL, et al. Role of lipopolysaccharide (LPS), interleukin-1, interleukin-6, tumor necrosis factor, and dexamethasone in regulation of LPS-binding protein expression in normal hepatocytes and hepatocytes from LPS-treated rats. Infect Immun 1995;63:2435-42.  Back to cited text no. 63
    
64.
Lamping N, Dettmer R, Schröder NW, Pfeil D, Hallatschek W, Burger R, et al. LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J Clin Invest 1998;101:2065-71.  Back to cited text no. 64
    
65.
Gallay P, Heumann D, Le Roy D, Barras C, Glauser MP. Lipopolysaccharide-binding protein as a major plasma protein responsible for endotoxemic shock. Proc Natl Acad Sci U S A 1993;90:9935-8.  Back to cited text no. 65
    
66.
Wurfel MM, Kunitake ST, Lichenstein H, Kane JP, Wright SD. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. J Exp Med 1994;180:1025-35.  Back to cited text no. 66
    
67.
Lengacher S, Jongeneel CV, Le Roy D, Lee JD, Kravchenko V, Ulevitch RJ, et al. Reactivity of murine and human recombinant LPS-binding protein (LBP) within LPS and gram negative bacteria. J Inflamm 1995;47:165-72.  Back to cited text no. 67
    
68.
Endo S, Suzuki Y, Takahashi G, Shozushima T, Ishikura H, Murai A, et al. Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. J Infect Chemother 2012;18:891-7.  Back to cited text no. 68
    
69.
Pettilä V, Hynninen M, Takkunen O, Kuusela P, Valtonen M. Predictive value of procalcitonin and interleukin 6 in critically ill patients with suspected sepsis. Intensive Care Med 2002;28:1220-5.  Back to cited text no. 69
    
70.
Eliasson M, Egesten A. Antibacterial chemokines - Actors in both innate and adaptive immunity. Contrib Microbiol 2008;15:101-17.  Back to cited text no. 70
    
71.
Stryjewski GR, Nylen ES, Bell MJ, Snider RH, Becker KL, Wu A, et al. Interleukin-6, interleukin-8, and a rapid and sensitive assay for calcitonin precursors for the determination of bacterial sepsis in febrile neutropenic children. Pediatr Crit Care Med 2005;6:129-35.  Back to cited text no. 71
    
72.
Bozza FA, Salluh JI, Japiassu AM, Soares M, Assis EF, Gomes RN, et al. Cytokine profiles as markers of disease severity in sepsis: A multiplex analysis. Crit Care 2007;11:R49.  Back to cited text no. 72
    
73.
Treschan TA, Peters J. The vasopressin system: Physiology and clinical strategies. Anesthesiology 2006;105:599-612.  Back to cited text no. 73
    
74.
Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D. Circulating vasopressin levels in septic shock. Crit Care Med 2003;31:1752-8.  Back to cited text no. 74
    
75.
Christ-Crain M, Morgenthaler NG, Struck J, Harbarth S, Bergmann A, Müller B. Mid-regional pro-adrenomedullin as a prognostic marker in sepsis: An observational study. Crit Care 2005;9:R816-24.  Back to cited text no. 75
    
76.
Guignant C, Voirin N, Venet F, Poitevin F, Malcus C, Bohé J, et al. Assessment of pro-vasopressin and pro-adrenomedullin as predictors of 28-day mortality in septic shock patients. Intensive Care Med 2009;35:1859-67.  Back to cited text no. 76
    
77.
Mauri T, Bellani G, Patroniti N, Coppadoro A, Peri G, Cuccovillo I, et al. Persisting high levels of plasma pentraxin 3 over the first days after severe sepsis and septic shock onset are associated with mortality. Intensive Care Med 2010;36:621-9.  Back to cited text no. 77
    
78.
Bottazzi B, Garlanda C, Cotena A, Moalli F, Jaillon S, Deban L, et al. The long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: Interplay with cellular innate immunity. Immunol Rev 2009;227:9-18.  Back to cited text no. 78
    
79.
de Kruif MD, Limper M, Sierhuis K, Wagenaar JF, Spek CA, Garlanda C, et al. PTX3 predicts severe disease in febrile patients at the emergency department. J Infect 2010;60:122-7.  Back to cited text no. 79
    
80.
Huttunen R, Hurme M, Aittoniemi J, Huhtala H, Vuento R, Laine J, et al. High plasma level of long pentraxin 3 (PTX3) is associated with fatal disease in bacteremic patients: A prospective cohort study. PLoS One 2011;6:e17653.  Back to cited text no. 80
    
81.
Vänskä M, Koivula I, Hämäläinen S, Pulkki K, Nousiainen T, Jantunen E, et al. High pentraxin 3 level predicts septic shock and bacteremia at the onset of febrile neutropenia after intensive chemotherapy of hematologic patients. Haematologica 2011;96:1385-9.  Back to cited text no. 81
    
82.
Calandra T, Roger T. Macrophage migration inhibitory factor: A regulator of innate immunity. Nat Rev Immunol 2003;3:791-800.  Back to cited text no. 82
    
83.
Bozza FA, Gomes RN, Japiassú AM, Soares M, Castro-Faria-Neto HC, Bozza PT, et al. Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis. Shock 2004;22:309-13.  Back to cited text no. 83
    
84.
Lehmann LE, Novender U, Schroeder S, Pietsch T, von Spiegel T, Putensen C, et al. Plasma levels of macrophage migration inhibitory factor are elevated in patients with severe sepsis. Intensive Care Med 2001;27:1412-5.  Back to cited text no. 84
    
85.
Bouchon A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001;410:1103-7.  Back to cited text no. 85
    
86.
Bopp C, Hofer S, Bouchon A, Zimmermann JB, Martin E, Weigand MA. Soluble TREM-1 is not suitable for distinguishing between systemic inflammatory response syndrome and sepsis survivors and nonsurvivors in the early stage of acute inflammation. Eur J Anaesthesiol 2009;26:504-7.  Back to cited text no. 86
    
87.
Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: A systematic review and meta-analysis. Crit Care Med 2006;34:1996-2003.  Back to cited text no. 87
    
88.
Moestrup SK, Møller HJ. CD163: A regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 2004;36:347-54.  Back to cited text no. 88
    
89.
Su LX, Feng L, Zhang J, Xiao YJ, Jia YH, Yan P, et al. Diagnostic value of urine sTREM-1 for sepsis and relevant acute kidney injuries: A prospective study. Crit Care 2011;15:R250.  Back to cited text no. 89
    
90.
Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5.  Back to cited text no. 90
    
91.
Krützfeldt J, Poy MN, Stoffel M. Strategies to determine the biological function of microRNAs. Nat Genet 2006;38 Suppl: S14-9.  Back to cited text no. 91
    
92.
Chen Q, Zhou H, Wu S, Wang H, Lv C, Cheng B, et al. Lack of association between TREM-1 gene polymorphisms and severe sepsis in a Chinese Han population. Hum Immunol 2008;69:220-6.  Back to cited text no. 92