1. |
Mohammadpour M, Mohajernezhadfard Z, Khodabande A, Vahedi P. Antibiotic susceptibility patterns of pseudomonas corneal ulcers in contact lens wearers. Middle East Afr J Ophthalmol 2011;18:228-31. [ PUBMED]
|
2. |
Mohammadpour M, Jabbarvand M, Karimi N. Therapeutic possibilities of ceftazidime nanoparticles in devasting pseudomonas ophthalmic infections; keratitis and endophthalmitis. Med Hypothesis Discov Innov Ophthalmol 2012;1:6-9.
|
3. |
Menzel-Severing J. Emerging techniques to treat corneal neovascularisation. Eye (Lond) 2012;26:2-12.
|
4. |
Tshionyi M, Shay E, Lunde E, Lin A, Han KY, Jain S, et al. Hemangiogenesis and lymphangiogenesis in corneal pathology. Cornea 2012;31:74-80.
|
5. |
FallahTafti MR, Khosravifard K, Mohammadpour M, Hashemian MN, Kiarudi MY. Efficacy of Intralesional bevacizumab injection in decreasing pterygium size. Cornea 2011;30:127-9.
|
6. |
Hashemian MN, Zare MA, Rahimi F, Mohammadpour M. Deep intrastromalbevacizumab injection for management of corneal stromal vascularization after deep anterior lamellar keratoplasty, a novel technique. Cornea 2011;30:215-8.
|
7. |
Chang JH, Gabison EE, Kato T, Azar DT. Corneal neovascularization. CurrOpinOphthalmol 2001;12:242-9.
|
8. |
Öner V, Küçükerdönmez C, Akova YA, Çolak A, Karalezli A. Topical and subconjunctivalbevacizumab for corneal neovascularization in an experimental rat model. Ophthalmic Res 2012;48:118-23.
|
9. |
Shakiba Y, Mansouri K, Arshadi D, Rezaei N. Corneal neovascularization: Molecular events and therapeutic options. Recent Pat Inflamm Allergy Drug Discov 2009;3:221-31.
|
10. |
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751-60.
|
11. |
Mohammadpour M, Jabbarvand M, Delrish E, Khoshzaban A. Antiangiogenic effect of silicate nanoparticles on corneal neovascularization induced by vascular endothelial growth factor. Journal of Medical Hypotheses and Ideas 2014;8:14-20.
|
12. |
Mohammadpour M, Hashemi H, Jabbarvand M, Delrish E. Penetration of silicate nanoparticles into the corneal stroma and intraocular fluids. Cornea 2014;33:738-43.
|
13. |
Barbé C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M, et al. Silica particles: A novel drug-delivery system. Adv Mater 2004;1959-66.
|
14. |
Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma.J Clin Invest 2011;121:2768-80.
|
15. |
Bradbury MS, Phillips E, Montero PH, Cheal SM, Stambuk H, Durack JC, et al. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. IntegrBiol (Camb) 2013;5:74-86.
|
16. |
Galagudza MM, Korolev DV, Sonin DL, Postnov VN, Papayan GV, Uskov IS, et al. Targeted drug delivery into reversibly injured myocardium with silica nanoparticles: Surface functionalization, natural biodistribution, and acute toxicity. Int J Nanomed 2010;5:231-7.
|
17. |
Borak B, Arkowski J, Skrzypiec M, Zió³kowski P, Krajewska B, Wawrzyñska M, et al. Behavior of silica particles introduced into an isolated rat heart as potential drug carriers. Biomed Mater 2007;2:220-3.
|
18. |
López T, Bata-García JL, Esquivel D, Ortiz-Islas E, Gonzalez R, Ascencio J, et al. Treatment of Parkinson's disease: Nanostructured sol-gel silica-dopamine reservoirs for controlled drug release in the central nervous system. Int J Nanomedicine 2010;6:19-31.
|
19. |
Jo DH, Kim JH, Yu YS, Lee TG, Kim JH. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine 2012;8:784-91.
|
20. |
Kazuo AB, Watanabe Y. Determination of silicate in seawater by inductively coupled plasma atomic emission spectrometry. J Oceanogr 1992;48:283-92.
|
21. |
Hartlen KD, Athanasopoulos AP, Kitaev V. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 2008;24:1714-20.
|
22. |
Mahoney JM, Waterbury LD. Drug effects on the neovascularization response to silver nitrate cauterization of the rat cornea. Curr Eye Res 1985;4:531-5.
|
23. |
Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669-76.
|
24. |
Klettner A, Roider J. Treating age-related macular degeneration - interaction of VEGF-antagonists with their target. Mini Rev Med Chem 2009;9:1127-35.
|
25. |
Amano S, Rohan R, Kuroki M, Tolentino M, Adamis AP. Requirement for vascular endothelial growth factor in wound-and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci 1998;39:18-22.
|
26. |
Oh JY, Kim MK, Wee WR. Subconjunctival and Intracorneal bevacizumab injection for corneal neovascularization in lipid keratopathy. Cornea 2009;28:1070-3.
|
27. |
Yeung SN, Lichtinger A, Kim P, Amiran MD, Slomovic AR. Combined use of subconjunctival and Intracorneal bevacizumab injection for corneal neovascularization. Cornea 2011;30:1110-4.
|
28. |
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2:347-60.
|
29. |
Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today 2008;13:144-51.
|
30. |
Bhatta RS, Chandasana H, Chhonker YS, Rathi C, Kumar D, Mitra K, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: In vitro and pharmacokinetics studies. Int J Pharm 2012;432:105-12.
|
31. |
Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. MacromolBiosci 2012;12:608-20.
|
32. |
Loo SC, Tan ZY, Chow YJ, Lin SL. Drug release from irradiated PLGA and PLLA multi-layered films. J Pharm Sci 2010;99:3060-71.
|
33. |
Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology 2009;20:455104.
|
34. |
Basavaraj KH. Nanotechnology in medicine and relevance to dermatology: Present concepts. Indian J Dermatol 2012;57:169-74. [ PUBMED]
|
35. |
Singh SR, Grossniklaus HE, Kang SJ, Edelhauser HF, Ambati BK, Kompella UB. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther 2009;16:645-59.
|
36. |
Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, et al. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ SciTechnol 2006;40:4374-81.
|
37. |
Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Le?niak A, et al. Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 2008;8:3069-74.
|
38. |
Liu T, Li L, Teng X, Huang X, Liu H, Chen D, et al. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials 2011;32:1657-68.
|
39. |
Cho M, Cho WS, Choi M, Kim SJ, Han BS, Kim SH, et al. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. ToxicolLett 2009;189:177-83.
|
40. |
Yu T, Hubbard D, Ray A, Ghandehari H. In vivobiodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. J Control Release 2012;163:46-54.
|
41. |
Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. The nanosilica hazard: Another variable entity. Part FibreToxicol 2010;7:39.
|
42. |
Liberman A, Martinez HP, Ta CN, Barback CV, Mattrey RF, Kono Y, et al. Hollow silica and silica-boron nano/microparticles for contrast-enhanced ultrasound to detect small tumors. Biomaterials 2012;33:5124-9.
|
43. |
Yu T, Malugin A,Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 2011;5:5717-28.
|
44. |
Takahashi T, Yamaguchi S, Chida K, Shibuya M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 2001;20:2768-78.
|
45. |
Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. BiochemBiophys Res Commun 2005;333:328-35.
|
46. |
Hosseini H, Nejabat M, Khalili MR. Bevacizumab (Avastin) as a potential novel adjunct in the management of pterygia. Med Hypotheses 2007;69:925-7.
|
47. |
Wood RW, Li VH, Kreuter J, Robinson JR. Ocular disposition of poly-hexyl-2-cyano[3 -14 C] acrylate nanoparticles in the albino rabbit. Int J Pharm 1985;23:175-83.
|
48. |
Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials 2009;30:6341-50.
|
49. |
Mohammadpour M. Managements for corneal neovascularization. Cornea 2013;32:e190.
|
50. |
Mohammadpour M. Deep intrastromal injection of bevacizumab for the management of corneal neovascularization. Cornea 2013; 32:109-10.
|