Authors
1 Biochemistry Department, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran; Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
2 Biochemistry Department, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran
3 National Cell Bank of Iran, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
Abstract
Background: The enhancement of glycosylation by applying glycoengineering approaches has become widely used to boost properties for protein therapeutics. The objective of this work was to engineer a new hyperglycosylated analog of erythropoietin (EPO) with appropriately targeted N-linked carbohydrates through bioinformatics tools.
Materials and Methods: The EPO protein sequence was retrieved from NCBI protein sequence database. Prediction of N-glycosylation sites for the target protein was done using the prediction server, NetNGlyc. The three-dimensional model of glycoengineered EPO (named as kypoetin) was constructed using the homology modeling program. Ramchandran plot obtained from PROCHECK server was used to check stereochemical property. Meanwhile, 3D model of kypoetin with attached N-carbohydrates was built up using the GlyProt server.
Results: In the new modified analog, three additional N-glycosylation sites at amino-acid positions 30, 34 and 86 were inserted. Ramchandran plot analysis showed 81.6% of the residues in the most favored region, 15.6% in the additional allowed, 1.4% in the generously allowed regions and 1.4% in the disallowed region. 3D structural modeling showed that attached carbohydrates were on the proper spatial position. The whole solvent accessible surface areas of kypoetin (15132.69) were higher than EPO (9938.62).
Conclusions: Totally, various model evaluation methods indicated that the glycoengineered version of EPO had considerably good geometry and acceptable profiles for clinical studies and could be considered as the effective drug.
Keywords
1. | |
2. | |
3. | |
4. | |
5. | |
6. | |
7. |
Flohr S, Kurz M, Kostenis E, Brkovich A, Fournier A, Klabunde T. Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure - activity relationships and nuclear magnetic resonance studies on urotensin II. J Med Chem 2002;45:1799-805. |
8. | |
9. | |
10. | |
11. | |
12. | |
13. | |
14. | |
15. | |
16. | |
17. | |
18. | |
19. | |
20. | |
21. | |
22. | |
23. |