Thermoanalytical characterization of clindamycin-loaded intravitreal implants prepared by hot melt extrusion


1 Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Ophthalmology, Eye Research Center, Farabi Eye Hospital, Tehran, Iran

3 Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran


Background: The aim of the present study was to evaluate a non-destructive fabrication method in for the development of sustained-release poly (L, D-lactic acid)-based biodegradable clindamycin phosphate implants for the treatment of ocular toxoplasmosis.
Materials and Methods: The rod-shaped intravitreal implants with an average length of 5 mm and a diameter of 0.4 mm were evaluated for their physicochemical parameters. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR), and nuclear magnetic resonance (1H NMR) studies were employed in order to study the characteristics of these formulations.
Results: Drug content uniformity  test confirmed the uniformity in different implant batches. Furthermore, the DSC, FTIR, and 1H NMR studies proved that the fabrication process did not have any destructive effects either on the drug or on the polymer structures.
Conclusion: These studies showed that the developed sustained-release implants could be of interest for long-term sustained intraocular delivery of clindamycin, which can provide better patient compliance and also have good potential in terms of industrial feasibility.


Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, et al. Intraocular implants for extended drug delivery: Therapeutic applications. Adv Drug Deliv Rev 2006;58:1182-202.  Back to cited text no. 1
Choonara YE, Pillay V, Danckwerts MP, Carmichael TR, du Toit LC. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J Pharm Sci 2010;99:2219-39.  Back to cited text no. 2
Eljarrat-Binstock E, Pe'er J, Domb AJ. New techniques for drug delivery to the posterior eye segment. Pharm Res 2010;27:530-43.  Back to cited text no. 3
Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today 2008;13:135-43.  Back to cited text no. 4
Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today 2011;16:270-7.  Back to cited text no. 5
Mainardes RM, Evangelista RC. Praziquantel-loaded PLGA nanoparticles: Preparation and characterization. J Microencapsulation 2005;22:13-24.  Back to cited text no. 6
Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev 1999;99:3181-98.  Back to cited text no. 7
Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997;28:5-24.  Back to cited text no. 8
Rao VS, Peyman GA, Khoobehi B, Vangipuram S. Evaluation of liposome-encapsulated clindamycin in Staphylococcus aureus endophthalmitis. Int Ophthalmol 1989;-13 ;181-5.  Back to cited text no. 9
Peyman GA, Charles HC, Liu KR, Khoobehi, Niesman M, Paquejt JT, et al. Intravitreal liposome-encapsulated drugs: A preliminary human report. Int Ophthalmol 1988;12 :175-82.  Back to cited text no. 10
Sobrin L, Kump LI, Foster CS. Intravitreal clindamycin for toxoplasmic retinochoroiditis. Retina 2007;27:952-7.  Back to cited text no. 11
Forster A, Hempenstall J, Tucker I, Rades T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm 2001;226:147-61.  Back to cited text no. 12
Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, et al. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm 2004;269:509-22.  Back to cited text no. 13
Bruce LD, Shah NH, Malick AW, Infeld MH, McGinity JW. Properties of hot-melt extruded tablet formulations for the colonic delivery of 5-aminosalicylic acid. Eur J Pharm Biopharm 2005;59:85-97.  Back to cited text no. 14
Fialho SL, da Silva Cunha A. Manufacturing techniques of biodegradable implants intended for intraocular application. Drug Deliv 2005;12:109-16.  Back to cited text no. 15
Rothen-Weinhold A, Besseghir K, Vuaridel E, Sublet E, Oudry N, Kubel F, et al. Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants. Eur J Pharm Biopharm 1999;48:113-21.  Back to cited text no. 16
Gosau M, Müller BW. Release of gentamicin sulphate from biodegradable PLGA-implants produced by hot melt extrusion. Pharmazie 2010;65:487-92.  Back to cited text no. 17
Bruni G, Amici L, Berbenni V, Marini A, Orlandi A. Drug-excipient compatibility studies: Search of interaction indicators. J Therm Anal Calorim 2002;68:561-73.  Back to cited text no. 18
Wyttenbach N, Birringer C, Alsenz J, Kuentz M. Drug-excipient compatibility testing using a high-throughput approach and statistical design. Pharm Dev Technol 2005;10:499-505.  Back to cited text no. 19
Verma RK, Garg S. Compatibility studies between isosorbide mononitrate and selected excipients used in the development of extended release formulations. J Pharm Biomed Anal 2004;35:449-58.  Back to cited text no. 20
"<905>Uniformity of Dosage Units" The United States Pharmacopeia. 35 th ed. (USP 35) United States Pharmacopeial Convention Inc., Rockville: CD-ROM (Insight Publishing Productivity); 2012.  Back to cited text no. 21
Bragagni M, Beneitez C, Martín C, Hernán Pérez de la Ossa D, Mura PA, Gil-Alegre ME. Selection of PLA polymers for the development of injectable prilocaine controlled release microparticles: Usefulness of thermal analysis. Int J Pharm 2013;441:468-75.  Back to cited text no. 22
Available from: [Last accessed on 4/16/2013].  Back to cited text no. 23
Hatakeyama T, Quinn FX, editors. Thermal Analysis-Fundamentals and Applications to Polymer Science. London: John Wiley and Sons company; 1994. p. 65-105.  Back to cited text no. 24
Hariharan M, Price JC. Solvent, emulsifier and drug concentration factors in poly (D, L-lactic acid) microspheres containing hexamethylmelamine. J Microencapsul 2002;19:95-109.  Back to cited text no. 25
Deng H, Lei Zh. Preparation and characterization of hollow Fe 3 O 4 /SiO 2 @PEG-PLA nanoparticles for drug delivery. Compos Part B: Eng 2013;54:194-9.  Back to cited text no. 26
Joshi Sh. HPLC separation of antibiotics present in formulated and unformulated samples. J Pharm Biom Anal 2002;28:795-809.  Back to cited text no. 27
Bharati CH, Jayaram P, Sunder Raj J, Saravana Kumar M, Bhargavi V, Handa VK, et al. Identification, isolation and characterization of impurities of clindamycin palmitate hydrochloride. J Pharm Biomed Anal 2008;48:1211-8.  Back to cited text no. 28
Vukomanoviæ M, Zavašnik-Bergant T, Braèko I, Skapin SD, Ignjatoviæ N, Radmiloviæ V, et al. Poly (D, L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 3: Properties of hydroxyapatite nano-rods and investigation of a distribution of the drug within the composite. Colloids Surf B Biointerfaces 2011;87:226-35.  Back to cited text no. 29
Moona SI, Leeb CW, Taniguchia I, Miyamotoa M, Kimuraa Y. Melt/solid polycondensation of l-lactic acid: An alternative route to poly (l-lactic acid) with high molecular weight. Polymer 2011;42:5059-62.  Back to cited text no. 30
Li Y, Sun XS. Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of L-lactic acid and surface-hydroxylated MgO. Biomacromolecules 2010;11:1847-55.  Back to cited text no. 31
Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci 2004;4:835-64.  Back to cited text no. 32
Nagarwal RC, Kumar R, Dhanawat M, Pandit JK. Modified PLA nano in situ gel: A potential ophthalmic drug delivery system. Colloids Surf B. Biointerfaces 2011;86:28-34.  Back to cited text no. 33
Essa S, Rabanel JM, Hildgen P. Effect of aqueous solubility of grafted moiety on the physicochemical properties of poly (d, l-lactide) (PLA) based nanoparticles. Int J Pharm 2010;388:263-73.  Back to cited text no. 34
Verdier L, Bertho G, Gharbi-Benarous J, Girault JP. Lincomycin and clindamycin conformations. A fragment shared by macrolides, ketolides and lincosamides determined from TRNOE ribosome-bound conformations. Bioorg Med Chem 2000;8:1225-43.  Back to cited text no. 35
Available from: [Last accessed on 02/23/2011].  Back to cited text no. 36
Merkli A, Tabatabay C, Gurny R, Heller J. Biodegradable polymers for the controlled release of ocular drugs. Prog Polym Sci 1998;23:563-80.  Back to cited text no. 37
Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17:93-102.  Back to cited text no. 38
Tamaddon L, Mostafavi A, Dorkoosh F, Karkhane R, Riazi-Esfahani M, Rafiee-Tehrani M. Design and development of intraocular polymeric implant systems for long-term controlled-release of clindamycin phosphate for toxoplasmic retinochroiditis. Adv Biomed Res In press 2013.  Back to cited text no. 39
Soheilian M, Ramezani A, Azimzadeh A, Sadoughi MM, Dehghan MH, Shahghadami R, et al. Randomized trial of intravitreal clindamycin and dexamethasone versus pyrimethamine, sulfadiazine, and prednisolone in treatment of ocular toxoplasmosis. Ophthalmology 2011;118:134-41.  Back to cited text no. 40
Lasave AF, Díaz-Llopis M, Muccioli C, Belfort R Jr, Arevalo JF. Intravitreal clindamycin and dexamethasone for zone 1 toxoplasmic retinochoroiditis at twenty-four months. Ophthalmology 2010;117:1831-8.  Back to cited text no. 41
Kishore K, Conway MD, Peyman GA. Intravitreal clindamycin and dexamethasone for toxoplasmic retinochoroiditis. Ophthalmic Surg Lasers 2001;32:183-92.  Back to cited text no. 42
Wei G, Jin J, Xu L, Liu Y, Lu W. Preparation, characterization and in vivo pharmacodynamic evaluation of thymopentin loaded poly (lactide acid)/poly (lactide-co-glycolide acid) implants. Int J Pharm 2010;398:123-9.  Back to cited text no. 43
Tsuji H, Ikarashi K. In vitro hydrolysis of poly (L-lactide) crystalline residues as extended-chain crystallites. Part I: Long-term hydrolysis in phosphate-buffered solution at 37 degrees C. Biomaterials 2004;25:5449-55.  Back to cited text no. 44
Hsiue GH, Liao CM, Lin SY. Effect of drug-polymer interaction on the release characteristics of methacrylic acid copolymer microcapsules containing theophylline. Artif Organs 1998;22:651-6.  Back to cited text no. 45
Sherman Hsu CP, editor. Infrared spectroscopy. Handbook of Instrumental Techniques for Analytical Chemistry. New Jersey?: Prentice Hall; 1997. p. 247-83.  Back to cited text no. 46
Stuart BH, editor. Infrared Spectroscopy: Fundamentals and Applications. Chichester: John Wiley and Sons Company; 2004. p. 113-36.  Back to cited text no. 47
Hanafy AF, El-Egaky AM, Mortada SA, Molokhia AM. Development of implants for sustained release of 5-fluorouracil using low molecular weight biodegradable polymers. Drug Discov Ther 2009;3:287-295.  Back to cited text no. 48
Nagarwal RC, Kumar R, Dhanawat M, Pandit JK. Modified PLA nano in situ gel: A potential ophthalmic drug delivery system. Colloids. Surf B Biointerfaces 2011;86:28-34.  Back to cited text no. 49