Authors
1 Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Health, Isfahan Provincial Health Office, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract
Background: Diagnosis and typing of Mycobacterium genus provides basic tools for investigating the epidemiology and pathogenesis of this group of bacteria. Polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) is an accurate method providing diagnosis and typing of species of mycobacteria. The present study is conducted by the purpose of determining restriction fragment profiles of common types of mycobacteria by PRA method of rpoB gene in this geographical region.
Materials and Methods: Totally 60 clinical and environmental isolates from February to October, 2013 were collected and subcultured and identified by phenotypic methods. A 360 bp fragment of the rpoB gene amplified by PCR and products were digested by MspI and HaeIII enzymes.
Results: In the present study, of all mycobacteria isolates identified by PRA method, 13 isolates (21.66%) were Mycobacterium tuberculosis, 34 isolates (56.66%) were rapidly growing Nontuberculosis Mycobacteria (NTM) that including 26 clinical isolates (43.33%) and 8 environmental isolates (13.33%), 11 isolates (18.33%) were clinical slowly growing NTM. among the clinical NTM isolates, Mycobacterium fortuitum Type I with the frequency of 57.77% was the most prevalent type isolates. Furthermore, an unrecorded of the PRA pattern of Mycobacterium conceptionense (HeaIII: 120/90/80, MspI: 120/105/80) was found. This study demonstrated that the PRA method was high discriminatory power for identification and typing of mycobacteria species and was able to identify 96.6% of all isolates.
Conclusion: Based on the result of this study, rpoB gene could be a potentially useful tool for identification and investigation of molecular epidemiology of mycobacterial species.
Keywords
1. | |
2. | |
3. | |
4. | |
5. |
Tan Y, Hu Z, Zhao Y, Cai X, Luo C, Zou C, et al. The beginning of the rpoB gene in addition to the rifampin resistance determination region might be needed for identifying rifampin/rifabutin cross-resistance in multidrug-resistant Mycobacterium tuberculosis isolates from Southern China. J Clin Microbiol 2012;50:81-5. |
6. | |
7. | |
8. | |
9. | |
10. | |
11. | |
12. | |
13. | |
14. |
Varma-Basil M, Garima K, Pathak R, Dwivedi SK, Narang A, Bhatnagar A, et al. Development of a novel PCR restriction analysis of the hsp65 gene as a rapid method to screen for the Mycobacterium tuberculosis complex and nontuberculous mycobacteria in high-burden countries. J Clin Microbiol 2013;51:1165-70. |
15. | |
16. | |
17. | |
18. | |
19. | |
20. | |
21. | |
22. |
Whang J, Lee BS, Choi GE, Cho SN, Kil PY, Collins MT, et al. Polymerase chain reaction-restriction fragment length polymorphism of the rpoB gene for identification of Mycobacterium avium subsp. Paratuberculosis and differentiation of Mycobacterium avium subspecies. Diagn Microbiol Infect Dis 2011;70:65-71. |
23. | |
24. | |
25. | |
26. | |
27. | |
28. |