Cytoprotective and antioxidant effects of human lactoferrin against H2O2-induced oxidative stress in human umbilical vein endothelial cells


1 Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Physiology, Applied Physiology Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran


Background: Lactoferrin (LF) is an iron-binding glycoprotein with antioxidant, anti-inflammatory and nitric oxide-dependent vasodilatory properties. In the present study, we investigated the protective and antioxidant effects of LF on H2O2-induced oxidative stress in human umbilical vein endothelial cells (HUVECs).
Materials and Methods: HUVECs were pretreated by (6.25–100 µg/ml) LF for 24 h and then exposed to 0.5 mM H2O2 for 2 h. Cell viability was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The intra- and extra-cellular hydroperoxides concentration and ferric reducing antioxidant power (FRAP) were determined in pretreated cells.
Results: Pretreatment of HUVECs with LF at the concentrations of 25–100 µg/ml significantly reduced the cytotoxicity of H2O2 in a concentration-dependent manner using MTT assay. LF pretreatment at different concentration ranges also decreased the hydroperoxides level and augmented the FRAP value in both intra-and extra-cellular assay.
Conclusion: These findings revealed antioxidant and cytoprotective effects of LF against H2O2-induced oxidative stress in HUVECs. With regard to the beneficial vascular activity of LF, further investigations are suggested for understanding its clinical value in human endothelial dysfunction and prevention and/or treatment of CVDs.


Lovegrove JA, Gitau R. Personalized nutrition for the prevention of cardiovascular disease: A future perspective. J Hum Nutr Diet 2008;21:306-16.  Back to cited text no. 1
Alwan A. Global status report on non-communicable diseases 2010. Geneva: World Health Organization; 2011.  Back to cited text no. 2
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006;3:e442.  Back to cited text no. 3
Onat D, Brillon D, Colombo PC, Schmidt AM. Human vascular endothelial cells: A model system for studying vascular inflammation in diabetes and atherosclerosis. Curr Diab Rep 2011;11:193-202.  Back to cited text no. 4
Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res 2000;87:840-4.  Back to cited text no. 5
Schulz E, Anter E, Keaney JF Jr. Oxidative stress, antioxidants, and endothelial function. Curr Med Chem 2004;11:1093-104.  Back to cited text no. 6
Peluso I, Morabito G, Urban L, Ioannone F, Serafini M. Oxidative stress in atherosclerosis development: The central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets 2012;12:351-60.  Back to cited text no. 7
Touyz RM, Briones AM. Reactive oxygen species and vascular biology: Implications in human hypertension. Hypertens Res 2011;34:5-14.  Back to cited text no. 8
Houston MC. The role of nutrition, nutraceuticals, vitamins, antioxidants, and minerals in the prevention and treatment of hypertension. Altern Ther Health Med 2013;19 Suppl 1:32-49.  Back to cited text no. 9
Manning RD Jr, Tian N, Meng S. Oxidative stress and antioxidant treatment in hypertension and the associated renal damage. Am J Nephrol 2005;25:311-7.  Back to cited text no. 10
Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T, Iwatsuki K. Twenty-five years of research on bovine lactoferrin applications. Biochimie 2009;91:52-7.  Back to cited text no. 11
Actor JK, Hwang SA, Kruzel ML. Lactoferrin as a natural immune modulator. Curr Pharm Des 2009;15:1956-73.  Back to cited text no. 12
Baveye S, Elass E, Mazurier J, Spik G, Legrand D. Lactoferrin: A multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med 1999;37:281-6.  Back to cited text no. 13
González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin: Structure, function and applications. Int J Antimicrob Agents 2009;33:301.e1-8.  Back to cited text no. 14
Safaeian L, Zabolian H. Antihypertensive effect of lactoferrin on dexamethasone-induced hypertension in rat. J Isfahan Med Sch 2013;31:1096-104.  Back to cited text no. 15
Safaeian L, Zabolian H. Antioxidant effects of bovine lactoferrin on dexamethasone-induced hypertension in rat. ISRN Pharmacol 2014;2014:943523.  Back to cited text no. 16
Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, et al. Ferulic acid protects lymphocytes from radiation-predisposed oxidative stress through extracellular regulated kinase. Int J Radiat Biol 2011;87:130-40.  Back to cited text no. 17
Damiens E, Mazurier J, el Yazidi I, Masson M, Duthille I, Spik G, et al. Effects of human lactoferrin on NK cell cytotoxicity against haematopoietic and epithelial tumour cells. Biochim Biophys Acta 1998;1402:277-87.  Back to cited text no. 18
Coyle CH, Kader KN. Mechanisms of H2O2-induced oxidative stress in endothelial cells exposed to physiologic shear stress. ASAIO J 2007;53:17-22.  Back to cited text no. 19
Wolff SP. Ferrous ion oxidation in presence of ferric ion indicator Xylenol orange for measurement of hydroperoxides. Methods Enzymol 1994;233:182-9.  Back to cited text no. 20
Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem 1996;239:70-6.  Back to cited text no. 21
Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J 2009;73:411-8.  Back to cited text no. 22
Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996;97:1916-23.  Back to cited text no. 23
Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: Implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 2003;278:22546-54.  Back to cited text no. 24
Banerjee D, Madhusoodanan UK, Sharanabasappa M, Ghosh S, Jacob J. Measurement of plasma hydroperoxide concentration by FOX-1 assay in conjunction with triphenylphosphine. Clin Chim Acta 2003;337:147-52.  Back to cited text no. 25
Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaïssa M, Spik G, et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem 1999;274:7011-7.  Back to cited text no. 26
Gao HL, Pang ZQ, Fan L, Hu KL, Wu BX, Jiang XG. Effect of lactoferrin- and transferrin-conjugated polymersomes in brain targeting: In vitro and in vivo evaluations. Acta Pharmacol Sin 2010;31:237-43.  Back to cited text no. 27
Mulder AM, Connellan PA, Oliver CJ, Morris CA, Stevenson LM. Bovine lactoferrin supplementation supports immune and antioxidant status in healthy human males. Nutr Res 2008;28:583-9.  Back to cited text no. 28
Maneva A, Taleva B, Maneva L. Lactoferrin-protector against oxidative stress and regulator of glycolysis in human erythrocytes. Z Naturforsch C 2003;58:256-62.  Back to cited text no. 29
Mladenka P, Semecký V, Bobrovová Z, Nachtigal P, Vávrová J, Holecková M, et al. The effects of lactoferrin in a rat model of catecholamine cardiotoxicity. Biometals 2009;22:353-61.  Back to cited text no. 30
Lawen A, Lane DJ. Mammalian iron homeostasis in health and disease: Uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal 2013;18:2473-507.  Back to cited text no. 31
Hayashida K, Takeuchi T, Ozaki T, Shimizu H, Ando K, Miyamoto A, et al. Bovine lactoferrin has a nitric oxide-dependent hypotensive effect in rats. Am J Physiol Regul Integr Comp Physiol 2004;286:R359-65.  Back to cited text no. 32
Ruiz-Giménez P, Burguete MC, Castelló-Ruiz M, Marcos JF, Salom JB, Vallés S, et al. Bovine lactoferrin pepsin hydrolysate exerts inhibitory effect on angiotensin I-converting enzyme-dependent vasoconstriction. Int Dairy J 2007;17:1212-5.  Back to cited text no. 33
Fernández-Musoles R, López-Díez JJ, Torregrosa G, Vallés S, Alborch E, Manzanares P, et al. Lactoferricin B-derived peptides with inhibitory effects on ECE-dependent vasoconstriction. Peptides 2010;31:1926-33.  Back to cited text no. 34
Baveye S, Elass E, Fernig DG, Blanquart C, Mazurier J, Legrand D. Human lactoferrin interacts with soluble CD14 and inhibits expression of endothelial adhesion molecules, E-selectin and ICAM-1, induced by the CD14-lipopolysaccharide complex. Infect Immun 2000;68:6519-25.  Back to cited text no. 35
Zakaria A, El Shazly M, Rashed L. Plasma lactoferrin level as a predictor to endothelial dysfunction in patients with obstructive sleep apnea. Egypt J Intern Med 2013;25:86-91.  Back to cited text no. 36