In Vitro study of the leishmanicidal activity of perovskia abrotanoides terpenoid-rich fractions against Leishmania major (MRHO/IR/75/ER)


1 Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

2 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran

3 Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran


Background: Cutaneous leishmaniasis (CL) is an ulcerative skin disease caused by some species of the genus Leishmania. Evidence shows that Perovskia abrotanoides is an important herbal medicine against Leishmania. This study was conducted to investigate the killing effect of terpenoid-rich fractions on promastigotes of L. major (MRHO/IR/75/ER).
Material and Method: The eluates of reverse phased medium pressure liquid chromatography (RP-MPLC) of the extract were subjected to thin-layer chromatography (TLC) and categorized into six final fractions. Primary proton nuclear magnetic resonance (H-NMR) spectroscopy confirmed fractions' nature. Fractions 4, 5, and 6 (F4, F5, F6) were identified as terpenoid-rich content. Two concentrations of 50 and 100 μg/ml were prepared to test leishmanicidal activity. Followed by treating promastigotes of L. major by the fractions in incubation times of 12, 24, and 48 hours, their viability was determined using a cell proliferation MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay.
Result: F4, F5, and F6 showed significant killing activity on promastigotes of L. major in a concentration-dependent manner. The viability of promastigotes was significantly reduced at a concentration of 100 μg/ml compared to 50 μg/ml (P-value <0.05). Also, over time a significant decreasing trend in the viability of promastigotes confirmed the time-dependent manner of the fractions (P-value <0.01). Furthermore, F5 had the highest leishmanicidal activity at the first incubation time compared with other fractions.
Conclusion: Terpenoid-rich fractions of the P. abrotanoides have a leishmanicidal activity that depends on time and concentration. Among them, F5 has the highest potency that may contain potent terpenoid constituents.


Chanda K. An overview on the therapeutics of neglected infectious diseases—leishmaniasis and chagas diseases. Front Chem 2021;9:37.   Back to cited text no. 1
Oladele RO, Ayanlowo OO, Richardson MD, Denning DW. Histoplasmosis in Africa: An emerging or a neglected disease? PLoS Negl Trop Dis 2018;12:e0006046.  Back to cited text no. 2
Soosaraei M, Khasseh AA, Fakhar M, Hezarjaribi HZ. A decade bibliometric analysis of global research on leishmaniasis in web of science database. Ann Med Surg 2018;26:30-7.  Back to cited text no. 3
Gradoni L. The leishmaniases of the mediterranean region. Curr Trop Med Rep 2017;4:21-6.  Back to cited text no. 4
Ponte-Sucre A, Gamarro F, Dujardin J-C, Barrett MP, López-Vélez R, García-Hernández R, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017;11:e0006052.  Back to cited text no. 5
Srivastava S, Mishra J, Gupta AK, Singh A, Shankar P, Singh S. Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India. Parasit Vectors 2017;10:1-11.  Back to cited text no. 6
Shaw C, Imamura H, Downing T, Blackburn G, Westrop G, Cotton J, et al. Genomic and metabolomic polymorphism among experimentally selected paromomycin-resistant leishmania donovani strains. Antimicrob Agents Chemother 2019;64:e00904-19.  Back to cited text no. 7
Mwenechanya R, Kovářová J, Dickens NJ, Mudaliar M, Herzyk P, Vincent IM, et al. Sterol 14α-demethylase mutation leads to amphotericin B resistance in Leishmania mexicana. PLoS Negl Trop Dis 2017;11:e0005649.   Back to cited text no. 8
Ibarra-Meneses AV, Moreno J, Carrillo E. New strategies and biomarkers for the control of visceral leishmaniasis. Trends Parasitol 2020;36:29-38.  Back to cited text no. 9
Passero LF, Brunelli EdS, Sauini T, Amorim Pavani TF, Jesus JA, Rodrigues E. The potential of traditional knowledge to develop effective medicines for the treatment of leishmaniasis. Front Pharmacol 2021;12:1408.   Back to cited text no. 10
Parsaei P, Karimi M, Mardani M. A review of treatments for leishmaniasis wound using the prescriptions of traditional medicine. Int J Adv Biotechnol Res 2017;8:2050-8.  Back to cited text no. 11
Naserifar R, Bahmani M, Abdi J, Abbaszadeh S, Nourmohammadi G-A, Rafieian-Kopaei M. A review of the most important native medicinal plants of Iran effective on leishmaniasis according to Iranian ethnobotanical references. Int J Adv Biotechnol Res 2017;8:1330-6.  Back to cited text no. 12
Mahboubi M. Iranian medicinal plants as antimicrobial agents. J Microbiol Biotechnology and Food Sciences. 2021;2021:2388-405.  Back to cited text no. 13
Jaafari MR, Hooshmand S, Samiei A, Hossainzadeh H. Evaluation of-leishmanicidal effect of Perovskia abrotanoides Karel root extract by in vitro leishmanicidal assay using promastigotes of Leishmania major. Pharmacologyonline 2007;1:299-303.  Back to cited text no. 14
Choudhary MI, Thomsen WJ. Bioassay Techniques for Drug Development. CRC Press; London, University of Karachi, Karachi, Pakistan 2001.  Back to cited text no. 15
Moslehi M, Namdar F, Esmaeilifallah M, Hejazi SH, Sokhanvari F, Siadat AH, et al. Evaluation of different concentrations of imatinib on the viability of leishmania major: An in vitro study. Adv Biomed Res 2019;8.   Back to cited text no. 16
Holakouie-Naieni K, Mostafavi E, Boloorani AD, Mohebali M, Pakzad R. Spatial modeling of cutaneous leishmaniasis in Iran from 1983 to 2013. Acta Trop 2017;166:67-73.  Back to cited text no. 17
Pradhan S, Schwartz R, Patil A, Grabbe S, Goldust M. Treatment options for leishmaniasis. Clin Exp Dermatol 2022;47:516-21.  Back to cited text no. 18
Parvizi MM, Zare F, Handjani F, Nimrouzi M, Zarshenas MM. Overview of herbal and traditional remedies in the treatment of cutaneous leishmaniasis based on traditional Persian medicine. Dermatol Ther 2020;33:e13566.   Back to cited text no. 19
Stokes JM, MacNair CR, Ilyas B, French S, Côté J-P, Bouwman C, et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nature microbiology 2017;2:1-8.   Back to cited text no. 20
Piccica M, Lagi F, Bartoloni A, Zammarchi L. Efficacy and safety of Pentamidine isethionate for tegumentary and visceral human leishmaniasis: A systematic review. J Travel Med 2021;28:taab065.  Back to cited text no. 21
Rabi Das VN, Siddiqui NA, Pal B, Lal CS, Verma N, Kumar A, et al. To evaluate efficacy and safety of amphotericin B in two different doses in the treatment of post kala-azar dermal leishmaniasis (PKDL). PLoS One 2017;12:e0174497.  Back to cited text no. 22
Sunyoto T, Potet J, Boelaert M. Why miltefosine—a life-saving drug for leishmaniasis—is unavailable to people who need it the most. BMJ Global Health 2018;3:e000709.  Back to cited text no. 23
Espada CR, Ribeiro-Dias F, Dorta ML, de Araújo Pereira LI, de Carvalho EM, Machado PR, et al. Susceptibility to miltefosine in Brazilian clinical isolates of leishmania (viannia) braziliensis. Am J Trop Med Hygiene 2017;96:656-9.  Back to cited text no. 24
Saigua Encalada AJ. Advances in the chemotherapy of chagas disease. Anti-Infective Agents in Medicinal Chemistry 2006;5:175-86.  Back to cited text no. 25
Santana W, de Oliveira SS, Ramos MH, Santos AL, Dolabella SS, Souto EB, et al. Exploring innovative leishmaniasis treatment: Drug targets from pre-clinical to clinical findings. Chem Biodivers 2021;18:e2100336.   Back to cited text no. 26
Rajkhowa S, Hazarika Z, Jha AN. Systems biology and bioinformatics approaches in leishmaniasis. In Applications of Nanobiotechnology for Neglected Tropical Diseases 2021. P. 509-548). Tezpur University, Tezpur, Assam, India.   Back to cited text no. 27
Bezemer JM, van der Ende J, Limpens J, de Vries HJ, Schallig HD. Safety and efficacy of allylamines in the treatment of cutaneous and mucocutaneous leishmaniasis: A systematic review. PloS One 2021;16:e0249628.   Back to cited text no. 28
Andrade-Neto VV, Rebello KM, Pereira TM, Torres-Santos EC. Effect of itraconazole-ezetimibe-miltefosine ternary therapy in murine visceral leishmaniasis. Antimicrob Agents Chemother 2021;65:e02676-20.   Back to cited text no. 29
Kar A, Jayaraman A, Raja MR, Srinivasan S, Debnath J, Mahapatra SK. Synergic effect of eugenol oleate with amphotericin B augments anti-leishmanial immune response in experimental visceral leishmaniasis in vitro and in vivo. Int Immunopharmacol 2021;91:107291.   Back to cited text no. 30
Aschale Y, Wubetu M, Reta H. Ethnobotany of medicinal plants used to treat leishmaniasis in Ethiopia: A systematic review. J Tradit Med Clin Naturopat. 2018;7:2-7.  Back to cited text no. 31
Musiol R, Malarz K, Mularski J. Quinoline alkaloids against neglected tropical diseases. Curr Org Chem 2017;21:1896-906.  Back to cited text no. 32
Pourhosseini S, Mirjalili M, Nejad Ebrahimi S, Sonboli A. Essential oil quantity and quality of different plant organs from Perovskia abrotanoides Karel in natural habitat of North Khorasan province. J Plant Productions (Agron Breed Hort) 2018;40:53-62.  Back to cited text no. 33
Gouri V, Pandey SC, Joshi D, Pande V, Upreti S, Samant M. Natural products as a novel source for antileishmanial drug development. Pathogenesis, Treatment and Prevention of Leishmaniasis. Academic Press, Missouri State University, USA 2021; p. 141-59.  Back to cited text no. 34
Karimzadeh SM, Moridi Farimani M, Amiri MS, Tabefam M, Alilou M, Stuppner H. Perovskanol, a new sesquiterpenoid with an unprecedented skeleton from Perovskia abrotanoides. Nat Prod Res 2021;35:2515-9.  Back to cited text no. 35
Duarte N, Ramalhete C, Lourenço L. Plant Terpenoids as Lead Compounds Against Malaria and Leishmaniasis. Studies in Natural Products Chemistry, Lisbon, Portugal 2019; p. 243-306.  Back to cited text no. 36