Transocular Doppler and optic nerve sheath diameter monitoring to detect intracranial hypertension

Authors

1 Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 Isfahan Neurosciences Research Center, Alzahra Hospital; Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: Increases in intracranial pressure (ICP) require a rapid recognition to allow for adequate treatments. The aim of this study was to determine whether transocular Doppler and optic nerve sheath diameter (ONSD) monitoring could reliably identify increases in ICP.
Materials and Methods: This is a cross-sectional case-control study, which was carried out on 2013. Subjects were chosen from patients who admitted to the neurology and neurosurgery departments and the intensive care unit of Alzahra Hospital (Isfahan, Iran). To measure the ICP, the authors used ultrasound to measure the diameter of the optic nerve sheath and transocular Doppler (TOD) to measure blood flew velocity in ophthalmic artery (OA) and ophthalmic vein (OV) in both groups.
Results: The mean of ONSD was 4.8 mm (SD 0.77) in patients with raised ICP and 3.2 mm (SD 0.3) in healthy volunteers which was significant (P < 0.001). The mean (SD) of TOD parameters were also significantly more in OA and OV of patients with raised ICP.
Conclusion: Ultrasound methods has been proposed as an alternative safe technique for invasive ICP measuring methods.

Keywords

1.
Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med 2007;49:508-14.  Back to cited text no. 1
    
2.
Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 2004;75:813-21.  Back to cited text no. 2
    
3.
Tsung JW, Blaivas M, Cooper A, Levick NR. A rapid noninvasive method of detecting elevated intracranial pressure using bedside ocular ultrasound: Application to 3 cases of head trauma in the pediatric emergency department. Pediatr Emerg Care 2005;21:94-8.  Back to cited text no. 3
    
4.
Rickert K, Sinson G. Intracranial pressure monitoring. Oper Tech Gen Surg 2003;5:170-5.  Back to cited text no. 4
    
5.
Raboel PH, Bartek J Jr, Andresen M, Bellander BM, Romner B. Intracranial pressure monitoring: Invasive versus non-invasive methods- A review. Crit Care Res Pract 2012;2012:950393.  Back to cited text no. 5
    
6.
Winkler F, Kastenbauer S, Yousry TA, Maerz U, Pfister HW. Discrepancies between brain CT imaging and severely raised intracranial pressure proven by ventriculostomy in adults with pneumococcal meningitis. J Neurol 2002;249:1292-7.  Back to cited text no. 6
    
7.
Hiler M, Czosnyka M, Hutchinson P, Balestreri M, Smielewski P, Matta B, et al. Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg 2006;104:731-7.  Back to cited text no. 7
    
8.
Hassler W, Steinmetz H, Gawlowski J. Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest. J Neurosurg 1988;68:745-51.  Back to cited text no. 8
    
9.
Schmidt B, Czosnyka M, Raabe A, Yahya H, Schwarze JJ, Sackerer D, et al. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke 2003;34:84-9.  Back to cited text no. 9
    
10.
Qayyum H, Ramlakhan S. Can ocular ultrasound predict intracranial hypertension? A pilot diagnostic accuracy evaluation in a UK emergency department. Eur J Emerg Med 2013;20:91-7.  Back to cited text no. 10
    
11.
Moretti R, Pizzi B. Ultrasonography of the optic nerve in neurocritically ill patients. Acta Anaesthe siol Scand 2011;55:644-52.  Back to cited text no. 11
    
12.
Karakitsos D, Soldatos T, Gouliamos A, Armaganidis A, Poularas J, Kalogeromitros A, et al. Transorbital sonographic monitoring of optic nerve diameter in patients with severe brain injury. Transplant Proc 2006;38:3700-6.  Back to cited text no. 12
    
13.
Girisgin AS, Kalkan E, Kocak S, Cander B, Gul M, Semiz M. The role of optic nerve ultrasonography in the diagnosis of elevated intracranial pressure. Emerg Med J 2007;24:251-4.  Back to cited text no. 13
    
14.
Bäuerle J, Lochner P, Kaps M, Nedelmann M. Intra- and interobsever reliability of sonographic assessment of the optic nerve sheath diameter in healthy adults. J Neuroimaging 2010;22:42-5.  Back to cited text no. 14
    
15.
Dubost C, Le Gouez A, Jouffroy V, Roger-Christoph S, Benhamou D, Mercier FJ, et al. Optic nerves heath diameter used as ultrasonographic assessment of the incidence of raised intracranial pressure in preeclampsia: A pilot study. Anesthesiology 2012;116:1066-71.  Back to cited text no. 15
    
16.
Helmke K, Hansen HC. Fundamentals of transorbital so no graphic evaluation of optic nerve sheath expansion under intracranial hypertension. I. Experimental study. Pediatr Radiol 1996;26:701-5.  Back to cited text no. 16
    
17.
Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med 2008;15:201-4.  Back to cited text no. 17
    
18.
Cammarata G, Ristagno G, Cammarata A, Mannanici G, Denaro C, Gullo A. Ocular ultrasound to detect intracranial hypertension in trauma patients. J Trauma 2011;71:779-81.  Back to cited text no. 18
    
19.
Amini A, Kariman H, ArhamiDolatabadi A, Hatamabadi HR, Derakhshanfar H, Mansouri B, et al. Use of the sonographic diameter of optic nerve sheath to estimate intracranial pressure. Am J Emerg Med 2013;31:236-9.  Back to cited text no. 19
    
20.
Rosenberg JB, Shiloh AL, Savel RH, Eisen LA. Non-invasive methods of estimating intracranial pressure. Neurocrit Care 2011;15:599-608.  Back to cited text no. 20
    
21.
Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: A systematic review and meta-analysis. Intensive Care Med 2011;37:1059-68.  Back to cited text no. 21
    
22.
Querfurth HW, Arms SW, Lichy CM, Irwin WT, Steiner T. Prediction of intracranial pressure from noninvasive transocular venous and arterial hemodynamic measurements: A pilot study. Neurocrit Care 2004;1:183-94.  Back to cited text no. 22
    
23.
Voulgaris SG, Partheni M, Kaliora H, Haftouras N, Pessach IS, Polyzoidis KS. Early cerebral monitoring using the transcranial Doppler pulsatility index in patients with severe brain trauma. Med Sci Monit 2005;11:CR49-52.  Back to cited text no. 23
    
24.
Sidi A, Messinger G, Mahla ME. Transcranial Doppler monitoring compared with invasive monitoring of intracranial pressure during acute intracranial hypertension. J Clin Monit Comput 1999;15:185-95.  Back to cited text no. 24
    
25.
Brandi G, Béchir M, Sailer S, Haberthür C, Stocker R, Stover JF. Transcranial color-coded duplex sonography allows to assess cerebral perfusion pressure noninvasively following severe traumatic brain injury. Acta Neurochir (Wien) 2010;152:965-72.  Back to cited text no. 25
    
26.
Tsivgoulis G, Alexandrov AV, Sloan MA. Advances in transcranial Doppler ultrasonography. Curr Neurol Neurosci Rep 2009;9:46-54.  Back to cited text no. 26
    
27.
Firsching R, Schütze M, Motschmann M, Behrens-Baumann W. Venous opthalmodynamometry: A noninvasive method for assessment of intracranial pressure. J Neurosurg 2000;93:33-6.  Back to cited text no. 27
    
28.
Ragauskas A, Matijosaitis V, Zakelis R, Petrikonis K, Rastenyte D, Piper I, et al. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology 2012;78:1684-91.  Back to cited text no. 28
    
29.
Malayeri AA, Bavarian S, Mehdizadeh M.Sonographicevaluation of optic nerve diameter in children with raised intracranial pressure. J Ultrasound Med 2005;24:143-7.  Back to cited text no. 29
    
30.
Kapadia FN, Jha AN. Simultaneous lumbar and intraventricular manometry to evaluate the role and safety of lumbar puncture in raised intracranial pressure following subarachnoid haemorrhage. Br J Neurosurg 1996;10:585-7.  Back to cited text no. 30
    
31.
Soldatos T, Chatzimichail K, Papathanasiou M, Gouliamos A. Optic nerve sonography: A new window for the non-invasive evaluation of intracranial pressure in brain injury. Emerg Med J 2009;26:630-4.  Back to cited text no. 31
    
32.
Beare NA, Glover SJ, Lewallen S, Taylor TE, Harding SP, Molyneux ME. Prevalence of raised intracranial pressure in cerebral malaria detected by optic nerve sheath ultrasound. Am J Trop Med Hyg 2012;87:985-8.  Back to cited text no. 32
    
33.
Strumwasser A, Kwan RO, Yeung L, Miraflor E, Ereso A, Castro-Moure F, et al. Sonographic optic nerve sheath diameter as an estimate of intracranial pressure in adult trauma. J Surg Res 2011;170:265-71.  Back to cited text no. 33
    
34.
Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care 2011;15:506-15.  Back to cited text no. 34
    
35.
Gura M, Silav G, Isik N, Elmaci I. Noninvasive estimation of cerebral perfusion pressure with transcranial Doppler ultrasonography in traumatic brain injury. Turk Neurosurg 2012;22:411-5.  Back to cited text no. 35
    
36.
Zweifel C, Czosnyka M, Carrera E, de Riva N, Pickard JD, Smielewski P. Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients. Neurosurgery 2012;71:853-61.  Back to cited text no. 36