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Background: Renal ischemia‑reperfusion  (RIR) is a major cause of renal dysfunction that acts through 
different mechanisms. We investigated the role of L‑Arginine as an endogenous nitric oxide (NO) precursor 
and NG‑nitro‑L‑Arginine methyl ester (L‑NAME) as an NO inhibitor on kidney and liver function in RIR model.
Materials and Methods: Fifty‑eight Wistar rats were randomly assigned to four groups. Groups 1 (sham‑operated, 
n = 13) received a single dose of saline (4 ml/kg, i.p.) and 2 (Ischemia [Isch], n = 14) received a single dose 
of saline (4 ml/kg, i.p.). Groups 3 (Isch + L‑NAME, n = 15) received a single dose of L‑NAME (20 mg/kg, 
i.p.) and 4 (Isch + L‑Arginine n = 16) received a single dose of L‑Arginine (300 mg/kg, i.p.), After 2 h, renal 
failure was induced by clamping both renal pedicles for 45 min, followed by 24‑h reperfusion in Groups 2–4. 
Finally, blood samples were obtained, and kidney tissue samples were subjected for pathology investigations.
Results: The body weight decreased, and the serum levels of blood urea nitrogen (BUN) and creatinine (Cr), 
and kidney tissue damage score  (KTDS) increased significantly in the Isch and Isch + L‑NAME groups 
compared with the sham group while L‑Arginine improved weight reduction (P < 0.05), and it reduced the 
serum levels of BUN and Cr, and KTDS when compared with the Isch and Isch + L‑NAME groups. Kidney 
weight increased significantly in all groups compared with the sham group. L‑Arginine reduced the liver 
tissue level of malondialdehyde and increased alkaline phosphatase.
Conclusion: L‑Arginine as an NO precursor can improve kidney function against RIR. It also improves 
oxidative stress in liver tissue.
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Role of nitric oxide in kidney and liver (as distance organ) 
function in bilateral renal ischemia‑reperfusion: Effect of 
L‑Arginine and NG‑nitro‑L‑Arginine methyl ester
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INTRODUCTION

Renal ischemia‑reperfusion  (RIR) is a common 
cause of renal dysfunction in partial nephrectomy, 
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renal transplantation, surgical revascularization 
of the renal artery, and treatment of suprarenal 
aortic aneurysms.[1‑3] The main pathophysiologic 
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effect in RIR injury is depletion of intracellular 
energy reserve that leads to a series of complex 
biochemical pathological and physiological injuries.[4] 
One of the important mechanisms is generation of 
reactive oxygen species  (ROS) such as superoxide 
anion (O2

−.), hydrogen peroxide (H2O2), and hydroxyl 
radical (OH.) that can cause oxidative injury of cellular 
macromolecules.[5,6] RIR injury can cause reduction 
in glomerular filtration rate  (GFR),[7] intracellular 
antioxidant index such as glutathione  (GSH) and 
enzymes such as glutathione reductase, superoxide 
dismutase (SOD), and catalase;[8,9] and disturbance in 
the release of nitric oxide (NO). On the other hand, 
there is some evidence that ischemia‑reperfusion (IR) 
injury affects remote organs.[10] For example, it may 
lead to the failure of other systems like lungs, brain, 
and liver.[11] It seems that some effects are mediated by 
an imbalance in the oxidant and antioxidant systems.[12] 
NO is a free radical that can easily pass through the 
cell membranes. Thus, together with relaxation of 
smooth muscles, this leads to vascular dilation[13] and 
improves blood flow in the arteries. Different isoforms 
of NO synthase  (NOS) have been identified in the 
kidney; namely, endothelial NOS (eNOS), inducible 
NOS  (iNOS), and neuron NOS  (nNOS). Among the 
isoforms, eNOS is mainly found in the vasa recta, inner 
medullary collecting duct, and glomeruli; iNOS can 
be expressed by vascular smooth muscle cells, renal 
tubular cells, and immune cells such as monocytes, 
macrophages, and neutrophils;[14] and nNOS is 
expressed in cells of the macula densa and seems 
to participate in tubuloglomerular feedback but has 
minimal effects on medullary perfusion.[15] L‑Arginine 
is a non essential amino acid that is produced 
in the kidneys and acts as a substrate for NOS. 
NG‑nitro‑L‑Arginine methyl ester or (L‑NAME) has 
characteristics similar to L‑Arginine in binding to 
NOS and inhibits NO production.[16] Thus, it can be 
used as an antagonist of L‑Arginine. Atanasova et al. 
discovered L‑NAME worsens Ischemia (Isch) effects,[17] 
and Klahr reported L‑Arginine protects renal disease 
by increasing GFR.[18] However, further information 
is still required on the alteration of antioxidant 
parameters after RIR pretreated with NO precursor 
and blocker. As mentioned IRI affects remote organs 
such as lungs, brain, intestines and liver[3,11] via 
migration cytokines, ROS, and other inflammatory 
agents in the circulation to distal.[3,19,20] Liver is a 
big gland and plays a major role in metabolism with 
numerous functions, including regulation of glycogen 
storage[21] decomposition of red blood cells, plasma 
proteins synthesis[22] hormone production, and amino 
acids metabolism,[23,24] detoxification,[25] and it produces 
bile.[26] Oxidative stress is a common mechanism of 
liver injury[27] and the role of L‑Arginine and L‑NAME 
on liver function after RIR also should be determined. 

Accordingly, this study was designed to determine the 
effect of L‑Arginine and L‑NAME on renal and liver 
biomarkers and tissue injury in rats.

MATERIALS AND METHODS

Animals
Fifty‑eight male and female Wistar rats  (weighing 
214.72  ±  3.19  g and 185.72  ±  2.70  g, respectively) 
were used in the current study. The rats were kept 
at a temperature of 23–25°C and 12 h light/12 h dark 
cycle and had free access to water and chow for at 
least 1 week prior to experiment. The study was in 
advance approved by the Isfahan University of Medical 
Sciences Ethics Committee.

Experimental protocol
The male and female rats were randomly divided into 
four experimental groups.

Group 1 (n = 13) received a single dose of saline (4 ml/kg 
body weight [BW] i.p.) and after 2 h underwent surgery 
without Isch process as the sham‑operated group. 
Group 2 (n = 14) as the Isch group received a single 
dose of saline (4 ml/kg BW i.p.) after 2 h experienced 
Isch. Groups  3  (n  =  15) received a single dose of 
L‑NAME (20 mg/kg, i.p.) underwent Isch after 2 h as 
Isch + L‑NAME and 4 (n = 16) received a single dose of 
L‑Arginine (300 mg/kg BW i.p.) as Isch + Arginine group 
and underwent Isch after 2 h similar to Groups 2 and 
3. All groups intervention followed by 24‑h reperfusion.

The animals were anesthetized by ketamine (75 mg/kg 
BW i.p.) and Groups 2–4 were operated and underwent 
bilateral kidney Isch for 45 min and then reperfusion. 
After 24  h of reperfusion, the animals were 
re‑anaesthetized, ventilation tube was inserted into 
the trachea, and the catheters were implanted into the 
carotid artery to obtain a blood sample. Finally, the 
rats were sacrificed, their kidneys and two pieces of 
liver tissue were removed and weighed immediately. 
The right kidneys were divided into two parts. One part 
of the kidney and a part of the liver were homogenized 
in phosphate buffered saline  (PBS)  (10 ml/g tissue) 
separately and centrifuged for measurement of GSH 
and other biochemical parameters. Other pieces were 
homogenized in sucrose buffer  (10  ml/g tissue) for 
measurement of SOD. Then, the supernatant was 
removed and frozen at −20°C to measure renal levels 
of biochemical parameters. The left kidneys were 
placed in formalin to be fixed for staining procedures.

Measurements
Super oxide dismutase assay
The activity of SOD was assayed according to 
the method modified by Kakkar et  al.[28] Briefly, 
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200 µl sample was mixed with 1.2  ml sodium 
pyrophosphate buffer  (pH  =  8.3, 0.052 M), 0.1  ml 
phenazine methosulfate (186 µM), and 0.3 ml nitroblue 
tetrazolium (300 µM) and 1 ml water. The reaction 
started as 0.2  ml reduced nicotinamide adenine 
dinucleotide (780 µM) was added. The reaction mixture 
was then incubated at 30°C for 90 s. Then, the reaction 
was stopped by addition of 1 ml of glacial acetic acid. 
Absorbance of the chromogen formed was measured 
at 560  nm. One unit of SOD activity is defined as 
the enzyme concentration required for inhibiting 
chromogen production by 50% in 1  min under the 
assay condition.

Glutathione assay
GSH was measured by the reaction of sulfhydryl 
groups with 5,5’‑dithio‑bis‑(2‑nitrobenzoic acid), (the 
Ellman’s reagent) by quantitating sulfhydryl 
groups based on the molar absorptivity.[29] Tissues 
were homogenized in 10% w/v PBS (0.1 M PH = 8) 
containing 1 mM ethylene diamine tetraacetic acid. 
After centrifuging, the supernatant was removed. 
To perform protein denaturation, 1000 μL cold meta 
phosphoric acid (5%) was added to 500 μL sample and 
shaken for 5 s, finally the mixture was centrifuged 
at  >1000  ×g for 5  min and the supernatant was 
carefully removed. Then, 100 μL of the samples 
or PBS as the blank were added to a test tube 
containing 20 μL of Ellman’s Reagent Solution (4 mg 
Ellman’s Reagent/1 ml PBS) and 1 mL of PBS. The 
solution in both tubes were mixed and incubated 
at the room temperature for 15  min. Finally, 
the sample absorbance was read at 412  nm by a 
spectrophotometer. The concentration of sulfhydryl in 
the sample was calculated from the molar extinction 
coefficient of TNB by C  =  A/bE equation where 
A = absorbance, b = path length in centimeters (=1), 
c = concentration in moles/liter (=M), E=14.150/M cm 
(for PBS in this condition).

Assessment of other factors
Serum liver and kidney levels of nitrite  (stable 
metabolite of NO) were assayed using an assay 
kit  (Promega Corporation, USA). Serum levels of 
creatinine  (Cr), aspartate aminotransferase  (AST), 
alanine aminotransferase  (ALT), and alkaline 
phosphatase (ALP); and blood urea nitrogen (BUN) 
were measured using quantitative kits (Pars Azmoon, 
Iran) by autoanalyzer  (Technicon Ireland LTD). 
Assessment of malondialdehyde  (MDA) level in the 
serum and kidney was performed by the manual 
method. Briefly, a mixture of 500 µl of the sample and 
1000 µl of 10% trichloroacetic acid was centrifuged 
at 2000 g for 10 min, then 500 µl of the supernatant 
was plused with 500 µl of 0.67% thiobarbituric acid. 
After 10  min of incubation in the boiling water 

and then cooling, the absorbance was measured at 
532 nm. Concentrations of MDA for serum and kidney 
samples were reported in µmol/L and nmol/g tissue, 
respectively.

Histopathological procedures
The left kidneys were fixed in 10% formalin solution 
and embedded in paraffin for hematoxylin and eosin 
staining to test the tubular damage. The damage was 
evaluated by a pathologist who was totally blind to 
the study. Kidney tissue damage score (KTDS) was 
graded from 1 to 4 based on the intensity of tubular 
lesions (hyaline cast, debris, vacuolization, flattening 
and degeneration of tubular cells, and dilatation of 
tubular lumen), while score zero was assigned to 
normal tubules without any damage.

Statistical analysis
Data are expressed as mean  ±  standard error of 
the mean. The BW loss, kidney weight  (KW); and 
levels of BUN, Cr, MDA, NO, liver and antioxidant 
enzymes were analyzed by one‑way analysis of 
variance followed by least significant difference as 
post hoc. The groups were compared with regard to 
the pathological damage score by the Kruskal–Wallis 
and Mann–Whitney tests.

RESULTS

Effect of NG‑nitro‑L‑Arginine methyl ester and 
L‑Arginine on serum levels of blood urea nitrogen and 
creatinine, and BW, kidney weight, and kidney tissue 
damage score
The serum levels of Cr significantly increased 
in the Isch and Isch  +  L‑NAME treated groups 
when compared with the sham group  (P  =  0.006) 
and L‑Arginine decreased these parameters when 
compared with the Isch group  (P  =  0.065) and 
Isch  +  L‑NAME treated group  (P  =  0.063). The 
serum levels of BUN significantly increased in the 
Isch alone and Isch + L‑NAME treated groups when 
compared with the sham group (P = 0.001). However, 
L‑Arginine decreased these parameters significantly 
when compared with the Isch  (P  =  0.044) and 
Isch + L‑NAME treated groups (P = 0.038) [Figure 1]. 
Isch also induced weight loss in the Isch (P = 0.03) and 
Isch + L‑NAME treated groups (P = 0.053) compared 
with the sham group. Moreover, administration of 
L‑Arginine ameliorated ischemia‑induced weight 
loss insignificantly (P = 0.112). The KW in the Isch 
alone, Isch + L‑NAME, and Isch + L‑Arginine groups 
elevated significantly when compared to the sham 
group (P = 0.003, 0.002 and 0.003, respectively). KTDS 
in the Isch alone, Isch + L‑NAME, and Isch + L‑Arginine 
groups elevated significantly when compared to 
the sham group  (P  =  0). However, administration 
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of L‑Arginine reduced KTDS in comparison with 
the Isch  (P  =  0.014) and Isch  +  L‑NAME treated 
group (P = 0.006) [Figure 1]. The samples images of 
kidney tissue are demonstrated in Figure 2.

Effect of NG‑nitro‑L‑Arginine methyl ester and 
L‑Arginine on serum, kidney, and liver tissue levels of 
nitrite, malondialdehyde, glutathione, and super oxide 
dismutase
The serum levels of MDA decreased significantly 
in the Isch group  (P  =  0.011) and Isch  +  L‑NAME 
groups  (P  =  0.001) when compared with the sham 
group, while the serum level of MDA was increased in 
L‑Arginine treated group compared with the Isch group 
(P = 0.051) and Isch + L‑NAME group (P = 0.003). These 
data also indicated that L‑Arginine improved liver 
tissue MDA level compared with the sham (P = 0.03), 
Isch alone, (P = 0.08) and Isch + L‑NAME (P = 0.04) 
groups. No significant differences were observed in 
the kidney MDA levels among the groups [Table 1].

The serum level of SOD elevated in the Isch + L‑NAME 
group compared with the sham  (P  =  0.002) and 
Isch (P = 0.004) groups. However, L‑Arginine decreased 
it significantly compared with the Isch (P = 0.03) and 
Isch + L‑NAME (P = 0) groups. No significant changes 
were observed in kidney and liver tissue levels of 

SOD among the groups. The liver nitrite level in the 
L‑Arginine treated group decreased significantly 
compared with the sham (P = 0.038), Isch (P = 0) and 
Isch  +  L‑NAME groups  (P  =  0.002). However, the 
groups were not significantly different in terms of 
kidney and serum nitrite levels. It was observed no 
significant difference in renal, liver and serum levels 
of GSH [Table 1].

Figure 2: Sample s images of kidney tissue in 4 experimental groups. 
More damage is shown in ischemia and ischemia + NG‑nitro‑L‑Arginine 
methyl ester groups

Figure 1: Comparison of the groups with regard to the serum levels of blood urea nitrogen and creatinine, kidney weight, body weight change (∆W), 
and kidney tissue damage score (*), (#), and (†) indicate significant difference from the sham, the ischemia, and the NG‑nitro‑L‑Arginine methyl 
ester groups, respectively
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Effect of NG‑nitro‑L‑Arginine methyl ester and 
L‑Arginine on serum and liver tissue levels of alanine 
aminotransferase, aspartate aminotransferase, and 
alkaline phosphatase
Serum AST concentrations increased significantly in 
the Isch + L‑NAME group compared with the sham 
group (P = 0.01). Liver ALP concentrations increased 
significantly in the Isch + L‑Arginine group compared 
with the sham group (P = 0.034). The groups were not 
significantly different with regard to the serum and 
tissue levels of ALT, kidney and liver tissue levels of 
AST, and serum level of ALP [Table 1].

DISCUSSION

In this study, we demonstrated that L‑Arginine 
administration improved renal function and tissue 
damage against RIR. Serum Cr and BUN levels are 
considered as indexes of renal function; thus, increase 
in their concentration indicates kidney dysfunction.[30] 
It was reported that GFR decreases during hypoxia[31] 
and NO production is disturbed by endothelial cells 
injury.[32] Endothelial cells, neutrophils, macrophages, 
Kupffer cells, and hepatocytes synthesize NO from 
L‑Arginine,[33] and NO improves renal blood flow[34] and 
GFR by dilation of vessels.[35] It seems that improvement 
in renal function and histology by administration of 
L‑Arginine in our study is because of NO generation 
and GFR increase. In addition, our results showed the 

damages did not alter by administration of nonselective 
NOS inhibitor. NO generated by iNOS is harmful, 
leading to tissue damage.[36,37] Several in  vivo and 
in vitro searches have demonstrated that inhibiting 
the expression or activity of iNOS[38,39] can prevent 
renal I/R injury. Generation of proxy nitrite (ONOO−) 
causing endothelial dysfunction[40] and the inhibition 
of eNOS to provide vasoconstrictive agents[41,42] are the 
two possible pathways. However, eNOS‑derived NO is 
a good one by which may protect the tissue from I/R 
induced injury via platelet aggregation and adhesion 
and attenuation of endothelium leukocyte interactions.
[43] Another mechanism by which eNOS‑derived NO 
may exert protection in our model of I/R is vasodilation 
and enhanced perfusion of the tissue.[44] L‑NAME 
is a nonselective NOS inhibitor for both eNOS and 
iNOS, so the consequence of this paradox did not alter 
kidney injury in our study. KW was increased by RIR. 
Different conditions such as the imbalance between 
vasodilatory and vasoconstrictive agents, endothelial 
congestion, and endothelial injury may enhance 
endothelial permeability.[45,46] Increased vascular 
endothelial permeability in kidney allows passing 
of macromolecules and water across vessel walls to 
kidney tissue, which leads to interstitial edema.[45] 
Kaneko et al. reported increased vascular permeability 
in the kidney during IR.[47] In the current study, KW 
possibly increased because of vascular endothelial 
permeability, followed by the development of edema. 

Table 1: Serum (A), kidney (B), and liver (C) levels of MDA, GSH, SOD, ALT, ALP, AST, and nitrite in four experimental groups
Serum (A)

Group SMDA (µmol/L) SGSH (µmol/L) SSOD (U/ml) SALT (U/L) SALP (U/L) SAST (U/L) Serum nitrite (µmol/L)
Group 1: Sham 0.29±0.03 470.16±50.30 45.21±1.20 88.85±17.60 289.54±57.40 298.69±31.73 11.99±3.29
Group 2: Ischemia 0.18±0.02* 453.37±42.54 46.95±3.20 77.83±6.32 343.16±66.60 373.50±36.89 08.92±1.05
Group 3: Ischemia + L‑NAME 0.14±0.02* 642.24±84.47 61.15±4.14*,# 86.80±13.66 312.23±53.11 445.20±46.67* 10.73±1.34
Group 4: Ischemia + L‑Arginine 0.26±0.02†,# 580.13±83.09 36.67±3.46†,# 62.93±5.12 320.60±49.69 350.63±34.54 09.27±1.49
P 0.002 0.194 0.000 0.380 0.931 0.068 0.663

Kidney (B)
KMDA (µmol/g) KGSH (µmol/g) KSOD (U/g) KALT (U/g) KAST (U/g) Kidney nitrite (µmol/g)

Group 1: Sham 0.23±0.03 13.94±0.89 842.09±53.53 7.60±1.58 13.51±2.99 0.18±0.01
Group 2: Ischemia 0.21±0.03 12.18±0.66 753.37±52.70 5.54±1.39 08.77±1.71 0.14±0.01
Group 3: Ischemia + L‑NAME 0.22±0.04 13.43±0.72 736.25±47.90 6.70±1.70 11.46±3.53 0.15±0.01
Group 4: Ischemia + L‑Arginine 0.15±0.02 12.51±0.82 808.33±27.54 5.70±1.47 11.07±2.71 0.14±0.01
P 0.143 0.379 0.349 0.785 0.724 0.248

Liver (C)
LMDA (µmol/g) LGSH (µmol/g) LSOD (U/g) LALT (U/g) LALP (U/g) LAST (U/g) Liver nitrite (µmol/g)

Group 1: Sham 0.17±0.04 19.32±0.96 681.16±54.41 16.30±1.89 0.19±0.02 21.92±3.70 0.17±0.02
Group 2: Ischemia 0.14±0.05 18.40±1.33 648.72±62.51 13.23±1.50 0.39±0.07 17.71±2.40 0.21±0.01
Group 3: Ischemia + L‑NAME 0.16±0.03 19.57±1.00 529.28±46.97 13.64±2.48 0.31±0.04 18.32±3.21 0.20±0.01
Group 4: Ischemia + L‑Arginine 0.05±0.0*,†,# 18.65±0.61 612.21±56.90 14.43±1.82 0.42±0.10* 15.76±1.71 0.13±0.00*,#,†

P 0.095 0.819 0.263 0.740 0.146 0.500 0.001
*,#,†Significant difference from the sham, the ischemia, and the L‑NAME groups, respectively. MDA: Malondialdehyde, SOD: Super oxide dismutase, ALT: Alanine 
aminotransferase, ALP: Alkaline phosphatase, AST: Aspartate aminotransferase, SMDA: Serum malondialdehyde, SSOD: Serum super oxide dismutase, SALT: Serum 
alanine aminotransferase, SALP: Serum alkaline phosphatase, SAST: Serum alkaline phosphatase, KMDA: Kidney malondialdehyde, KSOD: Kidney super oxide dismutase, 
KALT: Kidney alanine aminotransferase, KALP: Kidney alkaline phosphatase, KAST: Kidney alkaline phosphatase, LMDA: Liver malondialdehyde, LSOD: Liver super 
oxide dismutase, LALT: Liver alanine aminotransferase, LALP: Liver alkaline phosphatase, LAST: Liver alkaline phosphatase, L‑NAME: NG‑nitro‑L‑Arginine methyl ester, 
GSH: Glutathione, SGSH: Serum glutathione, LGSH: Liver glutathione, KGSH: Kidney glutathione 
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It was reported that RIR initiate some reactions in 
the organ and elicit a systemic inflammatory response 
by release of cytokines and inflammatory mediators; 
including tumor necrosis factor, interleukin 6, 
platelet‑activating factor, leukotrienes, and NO. This 
would prompt development of ROS with consequent 
oxidative stress.[12,19] Enhancement of oxidative 
stress leads to changes in the activity of the enzyme, 
cytoskeletal structure, membrane transport, and 
antioxidant defense in cells.[48] MDA as the end product 
of lipid peroxidation and GSH and SOD levels are 
the three indexes of oxidative stress. SOD and GSH 
levels decrease in oxidative stress.[49] Cytokines, ROS, 
and other inflammatory agents in the circulation can 
migrate to distal organs such as the liver and lung 
and initiate injury.[3,19,20] Kim et al. reported that acute 
kidney injury may lead to severe hepatic and intestinal 
injury.[11] Elevations in liver enzymes including AST, 
ALT, and ALP are indicators of hepatocellular injury 
that are released from the liver following a stressful 
insult and enter the circulation.[48,50,51] In the present 
study, we demonstrated that the serum level of SOD 
increases in Isch + L‑NAME group whereas this factor 
was decreased by L‑Arginine. This is in contrast with 
the MDA serum level. López‑Neblina et al. concluded 
that exogenous NO has beneficial and protective effects 
on ischemia‑induced kidney damages in rats. However, 
this protection is independent of lipid peroxidation.[52] 
This means that despite the increase lipid peroxidation 
and oxidative stress, NO can improve kidney function. 
Savas et  al. reported that MDA and nitrite levels 
increased in L‑Arginine treatment in a rat model of 
spinal cord IR injury.[53] As regarded, iNOS derived NO 
damage NO increase vascular dysfunction through the 
generation of peroxynitrite (ONOO−)[40] and inhibition 
of eNOS‑derived NO.[41,42] Therefore in conditions of 
this study iNOS derived NO (induced by L‑Arginine) 
increases lipid peroxidation and oxidative stress because 
we observed that in L‑Arginine group the serum level of 
SOD decreased and in Isch + L‑NAME group increased 
in contrast with the MDA serum level. Furthermore, 
serum nitrite did not elevate in L‑Arginine treatment 
in this study; therefore, it is possible that increasing 
in oxidative stress in Isch + L‑Arginine treated rats is 
due to formation of ONOO− (not serum nitrite) in the 
presence of the NO precursor. The results obtained 
in the current study showed that serum level of AST 
increased in the Isch + L‑NAME group but did not 
change in the liver tissue. It is known that AST is 
predominantly present in the liver. However, it is 
found in other organs such as muscle, heart, kidneys, 
red blood cells, brain, and small bowel.[54] Thus, it 
seems that the increase in serum level of AST is due 
to injury of other remote organs. The results of the 
present study indicate that L‑Arginine treatment 
increase ALP, but not other enzymes. It is reported 

that liver damage is characterized by an increase in 
all the three hepatic enzymes not one of them.[55] It 
is observed that L‑Arginine could improve the liver 
proliferation and elevate ALP in the rats underwent 
partial hepatectomy and the increase in the ALP level 
is considered as a liver cell regeneration index.[56] 
Therefore, it seems that increased ALP induced by 
L‑Arginine is not associated with liver damage. 
Ischemia‑induced BW loss and L‑Arginine treatment 
enhanced the enzyme level. It is reported that Isch 
and lack of intercellular oxygen may cause adenosine 
triphosphate (ATP) depletion.[57,58] This consequently 
increases the cellular glucose consumption and uptake, 
which lead to glycogenolysis and gluconeogenesis[59] 
and consequently the reduction of body weight (BW). 
This is while L‑Arginine prevents depletion of cellular 
ATP storage by the improvement of oxygen delivery. 
Thus, it is possible that L‑Arginine ameliorate BW loss 
via the above‑mentioned mechanism.

CONCLUSION

We concluded that L‑Arginine protects renal tissue 
function and histology against RIR injury. However, 
L‑Arginine did not improve stress oxidative in kidney 
whereas this effect was opposite in the liver.
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