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Background: Studies show inconsistent effects of forced exercise on cognitive processes. These differences 
are probably due to the stress of coercion in forced exercise. Because fluoxetine is used to treat complications 
caused by stress, this study aimed to evaluate the effects of fluoxetine on memory in rats under forced 
treadmill exercise.
Materials and Methods: Experimental groups were the control, the control exercise, the fluoxetine, and the 
fluoxetine exercise. The exercise program was treadmill running at 22 m/min, 0° inclination for 50 min/day, 
6 days/week, for 4 weeks. Fluoxetine (5 mg/kg) was injected 30 min before treadmill. Morris water maze 
and passive avoidance learning tests were used for evaluation of memory. Acquisition phase of both tests 
were performed before interventions and memory was evaluated 1‑day and 1‑week after the last session 
of exercise and treatments.
Results: Our data showed that forced exercise impaired performance in passive avoidance learning test 
(P < 0.05 and P < 0.01, 1‑day and 1‑week after the last session of exercise and treatments, respectively). 
Spatial memory was only impaired after 1‑week in the exercise group. Fluoxetine improved spatial 
memory after 1‑day in the control group. However, it had no significant effects on memory in the 
exercise group.
Conclusion: The data correspond to the possibility that forced treadmill exercise can cause stress, and 
thereby cause damage to memory. The present results suggest that although fluoxetine may improve 
memory in intact rats but it cannot prevent damages that are caused by forced exercise.
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Effects of fluoxetine on memory under forced treadmill 
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Original Article

INTRODUCTION

Exercise has positive effects on health and prevention 
of the disease. Exercise increases breathing, oxygen 
consumption by the muscles, blood flow to vital organs 
of the body, and boosts memory.[1] It reduces stress 
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and oxidative stress in mitochondrial membranes 
of the brain, heart, liver, and kidney.[2] The effects 
of exercise on the brain is including the increase in 
synaptic plasticity, learning and memory, cognitive 
performance, and helping to heal the diseases of aging, 
such as Alzheimer’s disease.[3]
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However, both in the human and animal studies 
conflicting effects of exercise on learning and memory 
were observed. This is discernible especially in 
complex behavioral tests as no change or impairment 
of learning. The variation in the results may be related 
to differences in the protocol (voluntary vs. forced), the 
intensity and duration of exercise.[4] For example, some 
studies have shown that treadmill exercise, a form of 
forced exercise, had no negative effects on the level of 
apoptosis in the hippocampal dentate gyrus, but also 
increases cell proliferation and synapses in this part of 
the brain and these factors will enhance and improve 
learning and memory.[5‑7] However, some studies have 
not shown these desired effects; for example, when 
there is background of a disease like Alzheimer’s or 
diabetes, treadmill exercise improves neurological 
and cognitive processes, but had no favorable effects 
in intact subjects.[8,9] It was also found that regular 
physical activity was accompanied by a positive impact 
on spatial learning and memory in the young rats, 
but without affecting in the middle‑aged and elderly 
ones.[10] Thus, the compulsory exercises may be having 
different effects on neuronal functions in different 
situations and this may be partly due to the stress of 
the use of force.

There are different forms of antidepressants, which 
are effective in controlling depression and stress. 
The initial hypothesis for their action was the 
enhancement of some neurotransmitters levels such 
as noradrenaline and serotonin. However, many 
studies have demonstrated that cellular and molecular 
adaptations occur in the brain at different levels to 
treatment with antidepressants. It has been reported 
that antidepressants have neuroprotective effects.[11,12] 
They reduce stress‑induced atrophy of hippocampal 
CA3 pyramidal cells[13,14] and increase proliferation of 
granular cells in the hippocampus.[15]

Fluoxetine is a selective serotonin reuptake inhibitor 
(SSRI). It has been demonstrated that fluoxetine can 
prevent delayed cerebral ischemia‑induced damage.[16] 
In addition, fluoxetine significantly decreased neuronal 
death, and suppressed gliosis (growth of astrocytes in 
damaged areas of the central nervous system) and 
proinflammatory markers in animal models of kainic 
acid‑induced cell death.[12] Also, it has been shown that 
antidepressants such as fluoxetine, clomipramine, 
amitriptyline doxepin, and desipramine have 
anti‑inflammatory effects.[17‑20]

Therefore, due to the effects of fluoxetine in reducing 
the effects of stress and its neuroprotective effects,[12] 
and because of the possibility that the stress caused 
by force in forced treadmill exercise can impact the 
positive effects of exercise, the aim of this study was to 

investigate the effects of fluoxetine on spatial memory 
and passive avoidance learning in rats under forced 
treadmill exercise.

MATERIALS AND METHODS

Male Wistar rats (180–220 g) were housed 4/cage 
and maintained on a 12 h light–dark cycle in an air 
conditioned constant temperature (23 ± 1°C) room, 
with food and water made available ad libitum. The 
Ethic Committee for Animal Experiments at Isfahan 
University approved the study, and all experiments 
were conducted in accordance with the National 
Institute of Health Guide for the Care and Use of 
Laboratory Animals (NIH publications number 80–23) 
revised 1996.

Animals were divided into four groups: The control, 
the control exercise, the fluoxetine, and the fluoxetine 
exercise (n = 10 for each experimental group).

Rats in the control exercise and fluoxetine exercise 
groups were subjected to run at the speed of 22 m/min 
for 50 min daily (6 days a week), for 4 weeks at 0° of 
inclination. To familiarize, animals were left on the 
treadmill for 50 min once a day for 2 consecutive days 
without operation of the treadmill, then from the 
3rd day onward, the treadmill was switched on and the 
speed increased from 5 to 22 m/min and the duration 
increased from 10 to 50 min over the course of 5 days. 
Electric shocks were used sparingly to motivate the 
animal to run. From week 2 onward, after warm up, 
speed and duration were kept constant at 22 m/min 
and 50 min/run. The nonrunners groups were put on 
the treadmill without running for the same duration 
as the runners.

Fluoxetine (5 mg/kg; Dr. ABIDI Pharmaceutical 
Laboratory)[14,16,21] was dissolved in saline and was 
injected intraperitoneally 30 min before treadmill 
running.

Acquisition phases of Morris water maze (MWM) 
and passive avoidance learning tests were conducted 
before starting the exercise protocol and receiving 
fluoxetine. One day and 1‑week after the last session 
of treatment and exercise retention phases of the tests 
were performed.

Passive avoidance learning test
The apparatus consists of two separate chambers 
connected through a guillotine door. One chamber 
was illuminated, while the other was dark. The floor 
of both the chambers consists of steel grids, used to 
deliver electric shocks. In the acquisition trail, 1‑day 
before exercise and treatments, each rat was placed 
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in the illuminated chamber while its back was to the 
guillotine door. After 30 s of habituation, the guillotine 
door separating the illuminated and dark chambers 
was opened and the initial latency to enter the dark 
chamber was recorded. The guillotine door was closed 
immediately after the rat enters the dark chamber, 
and an electric foot shock (75 V, 0.2 mA, 50 Hz) was 
delivered to the floor grids for 3 s. Then the rat was 
removed from the dark chamber and returned to its 
cage. One day and 1‑week after the last session of 
exercise and treatment, retention latency time to 
enter the dark chamber was taken in the same way 
as in the acquisition trail, but the foot shock was not 
delivered, and the latency time was recorded up to a 
maximum of 600 s.

Morris water maze test
The circular tank (180 cm in diameter) was filled with 
water (22 ± 2°C) made opaque and was surrounded 
by a variety of extra‑maze cues. The tank was divided 
into four quadrants, and four start positions were 
located at the interactions of the quadrants. Data 
were recorded using custom software (Radiab1). 
Twenty‑four hour before water maze testing, all 
rats were habituated to the water and apparatus. 
In the spatial acquisition phase, the rats learned to 
find a submerged platform using extra‑maze cues. 
A transparent Lucite platform (10 cm) was submerged 
2 cm underneath the water in the South‑East 
quadrant of the tank, where it remained for all spatial 
trials. Each rat participated in 16 trials, which were 
organized into daily block of four trials (1 trial/start 
position within a block) for 4 consecutive days prior 
to the start of exercise and treatment. For each trial, 
the rat was given a maximum time of 60 s to locate 
the platform, after which the rat remained there for 
30 s; if the rat did not locate the platform within 60 s, 
it was guided to it by the experimenter. The next 
trial started immediately after removal of rat from 
the platform. Escape latencies(s) was recorded. One 
day and 1‑week after the last session of exercise and 
treatment in the retention phase, 60 s probe trial 
was conducted to examine how well the rats had 
learned the exact location of the platform. During 
this trial, the platform was removed from the tank. 
The swim time was measured inside a circular area 
(70 cm diameter) around the center of platform and the 
number of crossing the exact location that previously 
the plat was located (plat crossing) was counted. To 
test possible deficits in sensor motor processes, rats 
were tested in the water maze with a visible platform 
after probe trial.[8,22]

Statistical analysis
Data were analyzed using the SPSS version 21 for 
windows (IBM Corporation). The data were analyzed 

statistically by two‑way analyze of variance (ANOVA) 
followed by Tukey post‑hoc for between subjects 
differences and within effects, across the blocks. The 
data from probe trial of MWM and passive avoidance 
learning were analyzed by one‑way ANOVA followed 
by Tukey. Number of plat crossing were analyzed by 
Kruskal–Wallis test (nonparametric ANOVA) followed 
by Dunn’s multiple comparisons for posttest. The 
significant level was set at P < 0.05. Results were 
expressed as a mean ± standard error of the mean.

RESULTS

Passive avoidance learning test
In the acquisition trial, the mean initial latencies were 
same in all groups. One day after the last session of 
exercise and treatment, step through latency showed 
that forced exercise significantly impaired memory 
with respect to the control group (P < 0.05). The 
fluoxetine had no significant effect on memory. In 
fluoxetine exercise group, latency was increased and 
no significant differences were observed compared to 
the control group [Figure 1a].

One week after the last session of exercise and 
treatment, step through latency was decreased in 

Figure 1: Effects of fluoxetine and forced treadmill running on 
step through latency in passive avoidance test, 1-day (a) and 
1-week (b) after the last session of exercise and treatment. Data are 
expressed as a mean ± standard error of the mean. *P < 0.05 and 
**P < 0.01 with respect to the control group, and #P < 0.05 with respect 
to the fluoxetine group (n = 9–10)

b

a
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the exercise group (P < 0.01) and fluoxetine could 
not prevent this decline, as there were no significant 
differences between the exercise and the fluoxetine 
exercise groups [Figure 1b].

Morris water maze test
All rats showed a reduction in escape latencies [BLOCK 
effect, F (3,105) =29.59, P < 0.001; Figure 2] across 
the blocks of trials, indicating spatial acquisition. 
The pattern of reduction in escape latencies across 
the blocks had no significant differences between 
the groups [GROUP * BLOCK effect interaction, 
F (9,105) = 1.03, P = 0.42; Figure 2]. Test of between 
subject effects did not show any significant difference 
between the groups.

For the results of probe trial 1‑day after the last 
session of exercise and treatment, between group 
comparison indicated that the fluoxetine group spent 
more time around the area, where the platform was 
previously located, than the control group [P < 0.05; 
Figure 3a]. There were no significant differences 
between the other groups. The number of plat crossing 
was lower in the fluoxetine exercise group with 
respect to the fluoxetine group [P < 0.05; Figure 3b]. 
But, the number of plat crossing was same between 
the other groups.

The results of probe trial 1‑week after the last 
session of exercise and treatment, between group 
comparison indicated that, the fluoxetine exercise 
group spent less time around the area than the 
control and the exercise groups [P < 0.05; Figure 4a]. 
There were no significant differences between the 
other groups. The number of plat crossing was 
lower in the exercise group with respect to the 
control group [P < 0.05; Figure 4b]. However, the 
number of plat crossing was same between the other 
groups.

Figure 2: Effects of fluoxetine and forced treadmill running on the 
escape latency at different blocks to reach the platform during the 
spatial acquisition of Morris Water Maze test in rats. Each point 
represents amean ± standard error of the mean of 4 swims. Lower 
numbers indicate better performance (n = 9–10)

DISCUSSION

The results showed that forced treadmill running 
damages memory. Although fluoxetine in intact 
animals could enhance memory somewhat, but when 
it used during forced exercise could not prevent the 
damages.

Despite the positive effects of voluntary exercise that 
has been shown in human and animal models,[23‑25] 
our results show that forced exercise can cause 
damages in the nervous system. These results are 
in line with studies that did not show any positive 
effects of treadmill running in rats.[26] Studies have 
shown that forced exercise compared to voluntary 
exercise, has minimum priority, high levels of 
stress and low levels of brain‑derived neurotrophic 
factor (BDNF) in the brain.[27] A study that compared 
low intensity (the speed of 10 m/min) and high 
intensity (the speed of 21 m/min) of forced exercise 
have shown that high intensity of forced exercise 
leaded to considerable impairment in spatial memory 
acquisition and concluded that this was probably due 
to high stress at high intensity of forced exercise.[28] 

Figure 3: Effects of fluoxetine and forced treadmill running on 
performance during the probe trial 1-day after the last session of 
exercise and treatment, as measured by the mean time spent inside 
a circular (70 cm diameter) around the center of platform (a) and the 
number of crossing the exact location that previously the plat was 
located (plat crossing) (b). Data are expressed as a mean ± standard 
error of the mean. *P < 0.05 with respect to the control group, and 
#P < 0.05 with respect to the fluoxetine group (n = 9–10)

b

a
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In this study, a day and a week after the last session 
of exercise, passive avoidance learning was damaged 
in the exercise group. But 1‑day after the last session 
of exercise no significant change was observed in 
spatial memory and just over a week, plat crossing 
was significantly decreased. The reason could be 
that in the short‑term, until the rats have exercised, 
favorable effects of exercise counteracted the effects 
of coercion‑induced stress somewhat, but a week 
later the lasting effects of stress could damage the 
memory.

Forced treadmill exercise can cause some stress 
responses, because in this type of activity, time, 
duration, and intensity of exercise is determined by 
the experimenter and the animal is forced to run by 
a mild electric shock.[29] Although, to manage stress, 
the rats in the control group placed on the treadmill in 
the same conditions while the power is off, but, these 
animals quickly become familiar with the device and 
avoid from the electric shock that is, on. They moved 
freely on the treadmill, and even sometimes slept. 
However, the rats in the exercise group, if did not 
run, were permanently at the risk of electric shock. 

In addition, the rats were exposed to stress that is 
due to intensity, time of day and duration of exercise, 
as well as.

Hippocampus is a part of the limbic system, which is 
involved in learning and memory.[30,31] Studies have 
shown that this region is damaged after repeated 
stress.[32] Stress increases the adrenal steroids 
and steroids affect the hippocampus and inhibit 
proliferation of granular cells in dentate gyrus.[33‑35] 
It has been demonstrated that adrenal steroids can 
cause deformation of dendrites in the hippocampus 
and damage to cognitive functions such as learning 
and memory.[35,36] However, favorable effects of 
forced exercise on learning and memory have been 
shown.[37] These differences may be due to differences 
in the intensity of exercise, differences of race 
and age of animals, which are known influencing 
factors.[38]

Secondarily, we observed that fluoxetine improves 
memory in normal rats somewhat. Fluoxetine is a 
SSRI that modulates long‑term neural functions 
in different structures of the brain.[39] Different 
studies showed the neuroprotective and proliferative 
effects of fluoxetine.[40,41] Fluoxetine can protect 
neurons after transient ischemic damage. Such 
effects are likely related to adjust and change in 
neurotrophic factors and antioxidant enzymes.[42] 
Fluoxetine increased BDNF expression that is an 
important factor for activate and strengthen the 
neural Plasticity.[43,44] In this study, it was observed 
that fluoxetine increases the memory in normal rats. 
However, 1‑week after discontinuation of fluoxetine, 
memory declined to the initial level and got similar 
to the control group. These results suggest that 
short‑term use of fluoxetine has temporary effect on 
memory and it is not associated with lasting changes. 
However, some studies have shown that long‑term 
use of fluoxetine can have reversible devastating 
effects on memory.[39]

Although, fluoxetine temporarily improved memory 
in intact rats, but had no significant effects on 
memory in the exercise group. Therefore, the stress 
caused by the forced exercise and its neurologic 
complications are not preventable by fluoxetine, and 
for appearance of its therapeutic effects, more time 
is probably needed; because, there is a 2–3 weeks 
delayed phase between initiation of treatment and 
the clinical protests of the therapeutic effects of 
antidepressants.[45]

Our results show that forced treadmill running can 
cause damage to memory. It seems that this damage 
is likely caused by stress that is a result of coercion. 

Figure 4: Effects of fluoxetine and forced treadmill running on 
performance during the probe trial 1-week after the last session of 
exercise and treatment, as measured by the mean time spent inside 
a circular (70 cm diameter) around the center of platform (a) and the 
number of crossing the exact location that previously the plat was 
located (plat crossing) (b). Data are expressed as a mean ± standard 
error of the mean. *P < 0.05 with respect to the control group, and 
#P < 0.05 with respect to the fluoxetine group (n = 9–10)

b

a
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However, there may be other factors that require 
further study. Also, despite that fluoxetine improves 
memory in intact rats, it could not prevent the 
damages caused by the forced exercise.
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