Vasomotor reactivity comparison in multiple sclerosis patients with white matter lesions and nonmultiple sclerosis subjects with white matter lesions in brain magnetic resonance imaging


1 Isfahan Neurosciences Research Center, Alzahra Hospital, Isfahan, Iran

2 Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran


Background: It has been recognized a close relationship between multiple sclerosis (MS) lesions and the cerebral vasculature. In this study, we observed cerebrovascular vasomotor reactivity difference between the MS patients and the non-MS migraine individuals.
Materials and Methods: This prospective study was conducted on 40 patients with MS referring to Neurology Clinic of Isfahan Al-Zahra Hospital in 2012. The patients were compared with the same number of non-MS migraine individuals. Both groups had white matter lesions in brain magnetic resonance imaging. To evaluate the rate of cerebral artery vasomotor reactivity, transcranial Doppler device was used, and breath-holding index (BHI) was separately calculated for each middle cerebral artery. Main flow velocity (MFV) was determined by continuously recording of a period of 5 min of breathing the air in the room. The obtained data were analyzed using SPSS software version 18 and t-test, Chi-square and analysis of variance tests.
Results: The mean values of MFV at rest was not significantly different between cases and control groups (46.21 ± 4.20 vs. 44.69 ± 4.34, P = 0.115) but difference between cases and control groups in MFV apnea was significant (59.11 ± 5.10 vs. 55.35 ± 6.03, P = 0.004). BHI in the control group was 0.79 ± 0.26 and in the case group was 0.93 ± 0.20 and these differences was found to be significant (P < 0.05).
Conclusion: The mean of BHI and cerebral vasomotor reactivity in MS patients was more than the non-MS migraine individuals, although the mechanism of this process still remains unknown.


Holley JE, Newcombe J, Whatmore JL, Gutowski NJ. Increased blood vessel density and endothelial cell proliferation in multiple sclerosis cerebral white matter. Neurosci Lett 2010;470:65-70.  Back to cited text no. 1
Uzuner N, Ozkan S, Cinar N. Cerebrovascular reactivity in multiple sclerosis patients. Mult Scler 2007;13:737-41.  Back to cited text no. 2
Milo R. The efficacy and safety of daclizumab and its potential role in the treatment of multiple sclerosis. Ther Adv Neurol Disord 2014;7:7-21.  Back to cited text no. 3
D'haeseleer M, Cambron M, Vanopdenbosch L, De Keyser J. Vascular aspects of multiple sclerosis. Lancet Neurol 2011;10:657-66.  Back to cited text no. 4
Jimenez J, Jy W, Mauro LM, Horstman LL, Ahn ER, Ahn YS, et al. Elevated endothelial microparticle-monocyte complexes induced by multiple sclerosis plasma and the inhibitory effects of interferon-beta 1b on release of endothelial microparticles, formation and transendothelial migration of monocyte-endothelial microparticle complexes. Mult Scler 2005;11:310-5.  Back to cited text no. 5
Hafler DA, Fox DA, Manning ME, Schlossman SF, Reinherz EL, Weiner HL.In vivo activated T lymphocytes in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. N Engl J Med 1985;312:1405-11.  Back to cited text no. 6
Jolink WM, Heinen R, Persoon S, van der Zwan A, Kappelle LJ, Klijn CJ. Transcranial Doppler ultrasonography co2 reactivity does not predict recurrent ischaemic stroke in patients with symptomatic carotid artery occlusion. Cerebrovasc Dis 2013;37:30-7.  Back to cited text no. 7
Alexander JS, Zivadinov R, Maghzi AH, Ganta VC, Harris MK, Minagar A. Multiple sclerosis and cerebral endothelial dysfunction: Mechanisms. Pathophysiology 2011;18:3-12.  Back to cited text no. 8
Moghaddasi M, Mamarabadi M, Habibi AH. A comparison of cerebral vasomotor reactivity in diabetic and nondiabetic Iranian patients. J Res Med Sci 2010;15:50-3.  Back to cited text no. 9
[PUBMED]  Medknow Journal  
Müller HR. Evaluation of vasomotor reactivity by transcranial Doppler and acetazolamide test before and after extracranial-intracranial bypass. Stroke 1992;23:1840.  Back to cited text no. 10
Martí-Fàbregas J, Belvís R, Guardia E, Cocho D, Muñoz J, Marruecos L, et al. Prognostic value of pulsatility index in acute intracerebral hemorrhage. Neurology 2003;61:1051-6.  Back to cited text no. 11
Diehl RR, Henkes H, Nahser HC, Kühne D, Berlit P. Blood flow velocity and vasomotor reactivity in patients with arteriovenous malformations. A ranscranial Doppler study. Stroke 1994;25:1574-80.  Back to cited text no. 12
Caplan LR, Reis DJ, Siesjo BK, Weir B, Welch KM. Primer on cerebrovascular disease. In: Traystman RJ, editor. Regulation of Cerebral Blood Flow by Carbon Dioxide. 1th ed. San Diego: Academic Press; 1997. p. 55-7.  Back to cited text no. 13
Uzuner N, Ozkan S, Gücüyener D, Ozdemir G. Cerebral blood flow velocity changes to visual stimuli in patients with multiple sclerosis. Mult Scler 2002;8:217-21.  Back to cited text no. 14
Unfirer S, Kibel A, Drenjancevic-Peric I. The effect of hyperbaric oxygen therapy on blood vessel function in diabetes mellitus. Med Hypotheses 2008;71:776-80.  Back to cited text no. 15
Lipsitz LA, Mukai S, Hamner J, Gagnon M, Babikian V. Dynamic regulation of middle cerebral artery blood flow velocity in aging and hypertension. Stroke 2000;31:1897-903.  Back to cited text no. 16
Hradílek P, Stourac P, Bar M, Zapletalová O, Skoloudík D. Colour Doppler imaging evaluation of blood flow parameters in the ophthalmic artery in acute and chronic phases of optic neuritis in multiple sclerosis. Acta Ophthalmol 2009;87:65-70.  Back to cited text no. 17
Mousavi SA, Khorvash F, Asadi B, Karkheiran F. Evaluation of vasomotor reactivity by transcranial Doppler sonography: Age and sex related differences in breath holding index in Iranian population. J Res Med Sci 2005;10:93-6.  Back to cited text no. 18
Ozkan S, Uzuner N, Kutlu C, Ozbabalik D, Ozdemir G. The effect of methylprednisolone treatment on cerebral reactivity in patients with multiple sclerosis. J Clin Neurosci 2006;13:214-7.  Back to cited text no. 19