The effect of Prosopis farcta beans extract on blood biochemical parameters in streptozotocin-induced diabetic male rats


1 Department of Animal Science, University of Birjand, Birjand, Iran

2 Department of Animal Health Management, School of Veterinary Medicine, Shiraz University, Shiraz, Iran


Background: The use of herbals in the treatment of diabetes mellitus is a well-established practice in traditional medicine. The medicinal plant Prosopis farcta has some antioxidant activity, which may be useful in diabetic patients. Since, there is no report on the antidiabetic effect of the P. farcta, this study evaluated antidiabetic activity of P. farcta bean extract (PFE) in streptozotocin (STZ)-induced diabetic rats.
Materials and Methods: Hyperglycemia was induced in male albino Wistar rats by intraperitoneal injection of STZ (55 mg/kg body weight [BW]), after which, the animals were randomly allocated into six experimental groups as follows: Group 1: Normal rats (received normal saline), Groups 2 and 3: Normal rats received PFE; (50 and 75 mg/kg BW), Group 4: Diabetic control rats, Group 5: Diabetic rats received PFE (50 mg/kg BW), Group 6: Diabetic rats received PFE (75 mg/kg BW). Three days after induction of diabetes, rats were received an extract of PFE orally for 12 days. Blood samples were collected by cardiac puncture to determine liver enzymes; aspartate aminotransferase and alanine aminotransferase (AST and ALT), cholesterol, triglyceride (TG), high and low density lipoproteins (HDL and LDL).

Results: The administration of PFE (50 and 75 mg/kg) in STZ-induced diabetic rats significantly reduced the blood glucose levels when compared with the STZ-control group (227.2 ± 12.00 and 259.6 ± 7.03 vs. 454.6 ± 12.66, P < 0.001). PFE in diabetic groups had no significant effect on the levels of cholesterol, TG, HDL, LDL, AST, and ALT compare to the STZ-control group.
Conclusion: P. farcta could reduce blood glucose in diabetic rats.

Talubmook C, Forrest A, Parsons M. Streptozotocin-induced diabetes modulates presynaptic and postsynaptic function in the rat ileum. Eur J Pharmacol 2003;469:153-8.  Back to cited text no. 1
Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am J Med 1991;91:S14-22.  Back to cited text no. 2
Al-Aboudi A, Afifi FU. Plants used for the treatment of diabetes in Jordan: A review of scientific evidence. Pharm Biol 2011;49:221-39.  Back to cited text no. 3
Ali-Shtayeh MS, Jamous RM, Al-Shafie′ JH, Elgharabah WA, Kherfan FA, Qarariah KH, et al. Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): A comparative study. J Ethnobiol Ethnomed 2008;4:13.  Back to cited text no. 4
Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002;81:81-100.  Back to cited text no. 5
Pasiecznik NM, Harris PJ, Smith SJ. Identifying Tropical Prosopis Species: A Field Guide. Coventry, United Kingdom HDRA Publishing: 2004.  Back to cited text no. 6
Robertson S, Narayanan N, Raj Kapoor B. Antitumour activity of Prosopis cineraria (L.) Druce against Ehrlich ascites carcinoma-induced mice. Nat Prod Res 2011;25:857-62.  Back to cited text no. 7
Sharma N, Garg V, Paul A. Antihyperglycemic, antihyperlipidemic and antioxidative potential of Prosopis cineraria bark. Indian J Clin Biochem 2010;25:193-200.  Back to cited text no. 8
Rahman AA, Samoylenko V, Jain SK, Tekwani BL, Khan SI, Jacob MR, et al. Antiparasitic and antimicrobial isoflavanquinones from Abrus schimperi. Nat Prod Commun 2011;6:1645-50.  Back to cited text no. 9
Omidi A, Ansari nik H, Ghazaghi M. Prosopis farcta beans increase HDL cholesterol and decrease LDL cholesterol in ostriches (Struthio camelus). Trop Anim Health Prod 2013;45:431-4.  Back to cited text no. 10
Asadollahi A, Sarir H, Omidi A, Torbati MB. Hepatoprotective potential of Prosopis farcta beans extracts against acetaminophen-induced hepatotoxicity in wister rats. Int J Prev Med 2014;5:1281-5.  Back to cited text no. 11
Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: Relationship of dose to metabolic response. J Clin Invest 1969;48:2129-39.  Back to cited text no. 12
Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H, et al. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes 1999;48:927-32.  Back to cited text no. 13
Rolo AP, Palmeira CM. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006;212:167-78.  Back to cited text no. 14
Ceriello A. New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy. Diabetes Care 2003;26:1589-96.  Back to cited text no. 15
Vasavada N, Agarwal R. Role of oxidative stress in diabetic nephropathy. Adv Chronic Kidney Dis 2005;12:146-54.  Back to cited text no. 16
Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol 2003;135C: 357-64.  Back to cited text no. 17
Anjaneyulu M, Chopra K. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 2004;31:244-8.  Back to cited text no. 18
Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free Radic Res 2002;36:1199-208.  Back to cited text no. 19
Okamoto T. Safety of quercetin for clinical application (Review). Int J Mol Med 2005;16:275-8.  Back to cited text no. 20
Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia 1990;33:462-4.  Back to cited text no. 21
Sharma SR, Dwivedi SK, Swarup D. Hypoglycaemic, antihyperglycaemic and hypolipidemic activities of Caesalpinia bonducella seeds in rats. J Ethnopharmacol 1997;58:39-44.  Back to cited text no. 22
Kannappan S, Anuradha CV. Insulin sensitizing actions of fenugreek seed polyphenols, quercetin and metformin in a rat model. Indian J Med Res 2009;129:401-8.  Back to cited text no. 23
[PUBMED]  Medknow Journal  
Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes 2005;542:S97-107.  Back to cited text no. 24
Narasimhacharya A, Nitesh KV, Desai TN. Prosopis juliflora as an antihypercholesterolemic agent. J Herb Med Toxicol 2010;4:31-4.  Back to cited text no. 25