Determination of antifungal susceptibility patterns among the environmental isolates of Aspergillus fumigatus in Iran


1 Department of Medical Mycology and Parasitology, School of Hygiene and Institute of Public Health Research, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Medical Mycology and Parasitology, Isfahan University of Medical Sciences, Isfahan, Iran

3 Department of Cellular and Molecular Biology, Isfahan Province Health Center, Isfahan, Iran


Background: In recent years, triazole-resistant environmental isolates of Aspergillus fumigatus have emerged in Europe and Asia. Azole resistance has been reported in patients who are treated with long-term azole therapy or exposure of the fungus spores to the azole fungicides used in agriculture. To date, a wide range of mutations in A. fumigatus have been described conferring azole-resistance, which commonly involves modifications in the cyp51A gene. We investigated antifungal susceptibility pattern of environmental isolates of A. fumigatus.
Materials and Methods: In this study, 170 environmental samples collected from indoors surfaces of three hospitals in Iran. It was used β-tubulin gene to confirm the all of A. fumigatus isolates, which was identified by conventional methods. Furthermore, the antifungal susceptibility of itraconazole, voriconazole, and posaconazole was investigated using broth microdilution test, according to European Committee on Antimicrobial Susceptibility testing reference method.
Results: From a total of 158 environmental molds fungi obtained from the hospitals, 58 isolates were identified as A. fumigatus by amplification of expected size of β-tubulin gene (~500 bp). In this study, in vitro antifungal susceptibility testing has shown that there were not high minimum inhibitory concentration values of triazole antifungals in all of the 58 environmental isolates of A. fumigatus.
Conclusion: Our findings demonstrated that there was not azole-resistant among environmental isolates of A. fumigatus. Medical triazoles compounds have structural similarity with triazole fungicide compounds in agriculture, therefore, resistance development through exposure to triazole fungicide compounds in the environment is important but it sounds there is not a serious health problem in drug resistance in environmental isolates in Iran.


Zaoutis TE, Heydon K, Chu JH, Walsh TJ, Steinbach WJ. Epidemiology, outcomes, and costs of invasive aspergillosis in immunocompromised children in the United States, 2000. Pediatrics 2006;117:e711-6.  Back to cited text no. 1
Denning DW. Invasive aspergillosis. Clin Infect Dis 1998;26:781-803.  Back to cited text no. 2
Howard SJ, Pasqualotto AC, Denning DW. Azole resistance in allergic bronchopulmonary aspergillosis and Aspergillus bronchitis. Clin Microbiol Infect 2010;16:683-8.  Back to cited text no. 3
Snelders E, Melchers WJ, Verweij PE. Azole resistance in Aspergillus fumigatus: A new challenge in the management of invasive aspergillosis? Future Microbiol 2011;6:335-47.  Back to cited text no. 4
Chryssanthou E.In vitro susceptibility of respiratory isolates of Aspergillus species to itraconazole and amphotericin B. Acquired resistance to itraconazole. Scand J Infect Dis 1997;29:509-12.  Back to cited text no. 5
Mellado E, Garcia-Effron G, Alcázar-Fuoli L, Melchers WJ, Verweij PE, Cuenca-Estrella M, et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother 2007;51:1897-904.  Back to cited text no. 6
Odds FC, Brown AJ, Gow NA. Antifungal agents: Mechanisms of action. Trends Microbiol 2003;11:272-9.  Back to cited text no. 7
Mann PA, Parmegiani RM, Wei SQ, Mendrick CA, Li X, Loebenberg D, et al. Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P450 14α-demethylase. Antimicrob Agents Chemother 2003;47:577-81.  Back to cited text no. 8
Mellado E, Diaz-Guerra T, Cuenca-Estrella M, Rodriguez-Tudela J. Identification of two different 14-α sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 2001;39:2431-8.  Back to cited text no. 9
Snelders E, Rijs AJ, Kema GH, Melchers WJ, Verweij PE. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol 2009;75:4053-7.  Back to cited text no. 10
Howard SJ, Cerar D, Anderson MJ, Albarrag A, Fisher MC, Pasqualotto AC, et al. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis 2009;15:1068-76.  Back to cited text no. 11
Verweij PE, Snelders E, Kema GH, Mellado E, Melchers WJ. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect Dis 2009;9:789-95.  Back to cited text no. 12
Snelders E, Camps SM, Karawajczyk A, Schaftenaar G, Kema GH, van der Lee HA, et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One 2012;7:e31801.  Back to cited text no. 13
Snelders E, van der Lee HA, Kuijpers J, Rijs AJ, Varga J, Samson RA, et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 2008;5:e219.  Back to cited text no. 14
Espinel-Ingroff A. Comparison of the E-test with the NCCLS M38-P method for antifungal susceptibility testing of common and emerging pathogenic filamentous fungi. J Clin Microbiol 2001;39:1360-7.  Back to cited text no. 15
Cuenca-Estrella M, Arendrup MC, Chryssanthou E, Dannaoui E, Lass-Florl C, Sandven P, et al. Multicentre determination of quality control strains and quality control ranges for antifungal susceptibility testing of yeasts and filamentous fungi using the methods of the antifungal susceptibility testing subcommittee of the european committee on antimicrobial susceptibility testing (AFST-EUCAST). Clin Microbiol Infect 2007;13:1018-22.  Back to cited text no. 16
Peterson SW. In: Klich MA, editor. Identification of Common Aspergillus Species. 2002. p. 116. [Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands: Cambridge Univ Press; 2003].  Back to cited text no. 17
Camps SM, van der Linden JW, Li Y, Kuijper EJ, van Dissel JT, Verweij PE, et al. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: A case study and review of the literature. Antimicrob Agents Chemother 2012;56:10-6.  Back to cited text no. 18
Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus section fumigati: Antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother 2008;52:1244-51.  Back to cited text no. 19
Balajee SA, Borman AM, Brandt ME, Cano J, Cuenca-Estrella M, Dannaoui E, et al. Sequence-based identification of Aspergillu s, fusarium, and Mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? J Clin Microbiol 2009;47:877-84.  Back to cited text no. 20
Arendrup MC, Kahlmeter G, Rodriguez-Tudela JL, Donnelly JP. Breakpoints for susceptibility testing should not divide wild-type distributions of important target species. Antimicrob Agents Chemother 2009;53:1628-9.  Back to cited text no. 21
Hope WW, Cuenca-Estrella M, Lass-Flörl C, Arendrup MC; European Committee on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing (EUCAST-AFST). EUCAST technical note on voriconazole and Aspergillus spp. Clin Microbiol Infect 2013;19:E278-80.  Back to cited text no. 22
Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope WW. Breakpoints for antifungal agents: An update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Updat 2013;16:81-95.  Back to cited text no. 23
Arendrup MC, Mavridou E, Mortensen KL, Snelders E, Frimodt-Møller N, Khan H, et al. Development of azole resistance in Aspergillus fumigatus during azole therapy associated with change in virulence. PLoS One 2010;5:e10080.  Back to cited text no. 24
Mohammadi F, Hashemi SJ, Zoll J, Melchers WJ, Rafati H, Dehghan P, et al. Quantitative analysis of single-nucleotide polymorphism for rapid detection of TR34/L98H- and TR46/Y121F/T289A-Positive Aspergillus fumigatus isolates obtained from patients in Iran from 2010 to 2014. Antimicrob Agents Chemother 2015;60:387-92.  Back to cited text no. 25
Warris A. Azole-resistant aspergillosis. J Infect 2015;71 Suppl 1:S121-5.  Back to cited text no. 26
Howard SJ, Webster I, Moore CB, Gardiner RE, Park S, Perlin DS, et al. Multi-azole resistance in Aspergillus fumigatus. Int J Antimicrob Agents 2006;28:450-3.  Back to cited text no. 27
Snelders E, van der Lee H, Kuijpers J, Rijs A, Varga J, Samson R, et al. 2 Emergence of azole resistance in Aspergillus fumigatus and spread of mechanism. Azole resistance in Aspergillus fumigatus: Collateral damage of fungicide use. .  Back to cited text no. 28
Badali H, Vaezi A, Haghani I, Yazdanparast SA, Hedayati MT, Mousavi B, et al. Environmental study of azole-resistant Aspergillus fumigatus with TR34/L98H mutations in the cyp51A gene in Iran. Mycoses 2013;56:659-63.  Back to cited text no. 29
Anderson JB. Evolution of antifungal-drug resistance: Mechanisms and pathogen fitness. Nat Rev Microbiol 2005;3:547-56.  Back to cited text no. 30
Lockhart SR, Frade JP, Etienne KA, Pfaller MA, Diekema DJ, Balajee SA. Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother 2011;55:4465-8.  Back to cited text no. 31
Chowdhary A, Kathuria S, Xu J, Sharma C, Sundar G, Singh PK, et al. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR34/L98H mutations in the cyp51A gene in India. PLoS One 2012;7:e52871.  Back to cited text no. 32