Authors
1 Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Medical Parasitology and Mycology, School of Medicine; Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 Department of Biology, School of Applied Sciences, Imam Hossein University, Tehran, Iran
5 Department of Biology, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
Abstract
Background: Candida species are the most prevalent cause of invasive fungal infections such as candidemia. Candidemia is a lethal fungal infection among immunocompromised patients worldwide. Main pathogen is Candida albicans but a global shift in epidemiology toward non-albicans species have reported. Species identification is imperative for good management of candidemia as a fatal infection. The aim of the study is to identify Candida spp. obtained from candidemia and determination of mortality rate among this population.
Materials and Methods: The study was performed during February 2014 to March 2015 in Tehran, Iran. Two-hundred and four blood cultures were evaluated for fungal bloodstream infection. Identification of isolates was carried out using phenotypic tests and polymerase chain reaction sequencing technique.
Results: Twenty-two out of 204 patients (10.8%) had candidemia. Candida parapsilosis was the most prevalent species (45.4%), followed by C. albicans (31.8%) and Candida glabrata (22.7%). Male to female sex ratio was 8/14.
Conclusions: The emergence of resistant strains of Candida species should be considered by physicians to decrease the mortality of this fatal fungal infection by appropriate treatment.
Keywords
1. |
Bar K, Wisplinghoff H, Wenzel RP, Bearman GM, Edmond MB. Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infections due to enterococci. BMC Infect Dis 2006;6:145. [PUBMED] |
2. |
Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: A persistent public health problem. Clin Microbiol Rev 2007;20:133-63. [PUBMED] |
3. |
Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH, et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: A patient-level quantitative review of randomized trials. Clin Infect Dis 2012;54:1110-22. [PUBMED] |
4. |
Arendrup MC, Bruun B, Christensen JJ, Fuursted K, Johansen HK, Kjaeldgaard P, et al. National surveillance of fungemia in Denmark (2004 to 2009). J Clin Microbiol 2011;49:325-34. [PUBMED] |
5. |
Pappas PG; Mycoses Study Group. Candidemia in the intensive care unit: Miles to go before we sleep. Crit Care Med 2011;39:884-5. [PUBMED] |
6. |
Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 1994;271:1598-601. [PUBMED] |
7. |
Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, Gould IM, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: An 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 2007;45:1735-45. [PUBMED] |
8. |
Diekema DJ, Messer SA, Brueggemann AB, Coffman SL, Doern GV, Herwaldt LA, et al. Epidemiology of candidemia: 3-year results from the emerging infections and the epidemiology of Iowa organisms study. J Clin Microbiol 2002;40:1298-302. [PUBMED] |
9. |
Chow JK, Golan Y, Ruthazer R, Karchmer AW, Carmeli Y, Lichtenberg D, et al. Factors associated with candidemia caused by non-albicans Candida species versus Candida albicans in the intensive care unit. Clin Infect Dis 2008;46:1206-13. [PUBMED] |
10. |
Samonis G, Kofteridis DP, Saloustros E, Giannopoulou KP, Ntziora F, Christidou A, et al. Candida albicans versus non-albicans bloodstream infection in patients in a tertiary hospital: An analysis of microbiological data. Scand J Infect Dis 2008;40:414-9. [PUBMED] |
11. |
Chi HW, Yang YS, Shang ST, Chen KH, Yeh KM, Chang FY, et al. Candida albicans versus non-albicans bloodstream infections: The comparison of risk factors and outcome. J Microbiol Immunol Infect 2011;44:369-75. [PUBMED] |
12. |
Bassetti M, Trecarichi EM, Righi E, Sanguinetti M, Bisio F, Posteraro B, et al. Incidence, risk factors, and predictors of outcome of candidemia. Survey in 2 Italian university hospitals. Diagn Microbiol Infect Dis 2007;58:325-31. [PUBMED] |
13. |
Velasco E, Bigni R. A prospective cohort study evaluating the prognostic impact of clinical characteristics and comorbid conditions of hospitalized adult and pediatric cancer patients with candidemia. Eur J Clin Microbiol Infect Dis 2008;27:1071-8. [PUBMED] |
14. |
Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004;39:309-17. [PUBMED] |
15. |
Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche HU, Quan SP, et al. Epidemiology and outcomes of candidemia in 3648 patients: Data from the Prospective Antifungal Therapy (PATH Alliance®) registry, 2004-2008. Diagn Microbiol Infect Dis 2012;74:323-31. [PUBMED] |
16. | |
17. | |
18. |
Cleveland AA, Farley MM, Harrison LH, Stein B, Hollick R, Lockhart SR, et al. Changes in incidence and antifungal drug resistance in candidemia: Results from population-based laboratory surveillance in Atlanta and Baltimore, 2008-2011. Clin Infect Dis 2012;55:1352-61. [PUBMED] |
19. |
Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis 2012;73:45-8. [PUBMED] |
20. |
Nucci M, Queiroz-Telles F, Alvarado-Matute T, Tiraboschi IN, Cortes J, Zurita J, et al. Epidemiology of candidemia in Latin America: A laboratory-based survey. PLoS One 2013;8:e59373. [PUBMED] |
21. |
Matsumoto E, Boyken L, Tendolkar S, McDanel J, Castanheira M, Pfaller M, et al. Candidemia surveillance in Iowa: Emergence of echinocandin resistance. Diagn Microbiol Infect Dis 2014;79:205-8. [PUBMED] |
22. |
Lotfi N, Shokohi T, Nouranibaladezaei SZ, Nasrolahi Omran A, Kondori N. High recovery rate of non-albicans Candida species isolated from burn patients with candidemia in Iran. Jundishapur J Microbiol 2015;8:e22929. [PUBMED] |
23. |