From conventional therapy toward microRNA-based therapy in acute promyelocytic leukemia

Reviewers

Authors

Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Acute promyelocytic leukemia (APL) is a hematopoietic malignancy that is known with its special cytogenetic feature. Several studies have surveyed expression signature of microRNAs (miRNAs) in APL patients, especially patients who are treated with conventional therapy of this disease. Using miRNAs as diagnostic or prognostic biomarkers in various cancers has been widely studied. Currently, most studies are focusing on exploiting miRNAs as therapeutic tools, and promising progress has been achieved in this field. Recently, studies in the field of miRNA-based therapy in APL have been started.

Keywords

1.
Li J, Zhu H, Hu J, Mi J, Chen S, Chen Z, et al. Progress in the treatment of acute promyelocytic leukemia: Optimization and obstruction. Int J Hematol 2014;100:38-50.  Back to cited text no. 1
    
2.
Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 2009;114:937-51.  Back to cited text no. 2
    
3.
Chang H, Kuo MC, Shih LY, Dunn P, Wang PN, Wu JH, et al. Clinical bleeding events and laboratory coagulation profiles in acute promyelocytic leukemia. Eur J Haematol 2012;88:321-8.  Back to cited text no. 3
    
4.
Garofalo M, Leva GD, Croce CM. MicroRNAs as anti-cancer therapy. Curr Pharm Des 2014;20:5328-35.  Back to cited text no. 4
    
5.
Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell 2005;122:6-7.  Back to cited text no. 5
    
6.
Farazi TA, Hoell JI, Morozov P, Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol 2013;774:1-20.  Back to cited text no. 6
    
7.
Mistry AR, Pedersen EW, Solomon E, Grimwade D. The molecular pathogenesis of acute promyelocytic leukaemia: Implications for the clinical management of the disease. Blood Rev 2003;17:71-97.  Back to cited text no. 7
    
8.
Wang ZY, Chen Z. Acute promyelocytic leukemia: From highly fatal to highly curable. Blood 2008;111:2505-15.  Back to cited text no. 8
    
9.
de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991;66:675-84.  Back to cited text no. 9
    
10.
Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002;295:1079-82.  Back to cited text no. 10
    
11.
Licht JD. Acute promyelocytic leukemia – Weapons of mass differentiation. N Engl J Med 2009;360:928-30.  Back to cited text no. 11
    
12.
Sanz MA, Jarque I, Martín G, Lorenzo I, Martínez J, Rafecas J, et al. Acute promyelocytic leukemia. Therapy results and prognostic factors. Cancer 1988;61:7-13.  Back to cited text no. 12
    
13.
Cunningham I, Gee TS, Reich LM, Kempin SJ, Naval AN, Clarkson BD. Acute promyelocytic leukemia: Treatment results during a decade at Memorial Hospital. Blood 1989;73:1116-22.  Back to cited text no. 13
    
14.
Fenaux P, Wang ZZ, Degos L. Treatment of acute promyelocytic leukemia by retinoids. Curr Top Microbiol Immunol 2007;313:101-28.  Back to cited text no. 14
    
15.
Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, et al. Management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2009;113:1875-91.  Back to cited text no. 15
    
16.
Sanz MA, Iacoboni G, Montesinos P. Acute promyelocytic leukemia: Do we have a new front-line standard of treatment? Curr Oncol Rep 2013;15:445-9.  Back to cited text no. 16
    
17.
Cyranoski D. Arsenic patent keeps drug for rare cancer out of reach of many. Nat Med 2007;13:1005.  Back to cited text no. 17
    
18.
de Thé H, Le Bras M, Lallemand-Breitenbach V. The cell biology of disease: Acute promyelocytic leukemia, arsenic, and PML bodies. J Cell Biol 2012;198:11-21.  Back to cited text no. 18
    
19.
Jing Y, Wang L, Xia L, Chen GQ, Chen Z, Miller WH, et al. Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood 2001;97:264-9.  Back to cited text no. 19
    
20.
Cull EH, Altman JK. Contemporary treatment of APL. Curr Hematol Malig Rep 2014;9:193-201.  Back to cited text no. 20
    
21.
Lee J, Li Z, Brower-Sinning R, John B. Regulatory circuit of human microRNA biogenesis. PLoS Comput Biol 2007;3:e67.  Back to cited text no. 21
    
22.
Pacifico F, Crescenzi E, Mellone S, Iannetti A, Porrino N, Liguoro D, et al. Nuclear factor-{kappa} B contributes to anaplastic thyroid carcinomas through up-regulation of miR-146a. J Clin Endocrinol Metab 2010;95:1421-30.  Back to cited text no. 22
    
23.
Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, et al. Structure and activity of putative intronic miRNA promoters. RNA 2010;16:495-505.  Back to cited text no. 23
    
24.
Bortolin-Cavaillé ML, Dance M, Weber M, Cavaillé J. C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 2009;37:3464-73.  Back to cited text no. 24
    
25.
Price C, Chen J. MicroRNAs in cancer biology and therapy: Current status and perspectives. Genes Dis 2014;1:53-63.  Back to cited text no. 25
    
26.
Jeyaseelan K, Herath WB, Armugam A. MicroRNAs as therapeutic targets in human diseases. Expert Opin Ther Targets 2007;11:1119-29.  Back to cited text no. 26
    
27.
Rota R, Ciarapica R, Giordano A, Miele L, Locatelli F. MicroRNAs in rhabdomyosarcoma: Pathogenetic implications and translational potentiality. Mol Cancer 2011;10:120.  Back to cited text no. 27
    
28.
Fazi F, Nervi C. MicroRNA: Basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc Res 2008;79:553-61.  Back to cited text no. 28
    
29.
Yang Z, Wang L. Regulation of microRNA expression and function by nuclear receptor signaling. Cell Biosci 2011;1:31.  Back to cited text no. 29
    
30.
Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008;30:460-71.  Back to cited text no. 30
    
31.
Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003;1:882-91.  Back to cited text no. 31
    
32.
McManus MT. MicroRNAs and cancer. Semin Cancer Biol 2003;13:253-8.  Back to cited text no. 32
    
33.
Tie J, Fan D. Big roles of microRNAs in tumorigenesis and tumor development. Histol Histopathol 2011;26:1353-61.  Back to cited text no. 33
    
34.
Li Z, Cao Y, Jie Z, Liu Y, Li Y, Li J, et al. miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer Lett 2012;323:41-7.  Back to cited text no. 34
    
35.
Romano G, Acunzo M, Garofalo M, Di Leva G, Cascione L, Zanca C, et al. MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non-small-cell lung cancer through BIM down-regulation. Proc Natl Acad Sci U S A 2012;109:16570-5.  Back to cited text no. 35
    
36.
Gasparini P, Lovat F, Fassan M, Casadei L, Cascione L, Jacob NK, et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci U S A 2014;111:4536-41.  Back to cited text no. 36
    
37.
Ward A, Balwierz A, Zhang JD, Küblbeck M, Pawitan Y, Hielscher T, et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 2013;32:1173-82.  Back to cited text no. 37
    
38.
Li Z, Huang H, Li Y, Jiang X, Chen P, Arnovitz S, et al. Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood 2012;119:2314-24.  Back to cited text no. 38
    
39.
Jiang X, Huang H, Li Z, Li Y, Wang X, Gurbuxani S, et al. Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 2012;22:524-35.  Back to cited text no. 39
    
40.
Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009;113:6411-8.  Back to cited text no. 40
    
41.
Zhang J, Du YY, Lin YF, Chen YT, Yang L, Wang HJ, et al. The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun 2008;377:136-40.  Back to cited text no. 41
    
42.
Okada N, Lin CP, Ribeiro MC, Biton A, Lai G, He X, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 2014;28:438-50.  Back to cited text no. 42
    
43.
Krutovskikh VA, Herceg Z. Oncogenic microRNAs (OncomiRs) as a new class of cancer biomarkers. Bioessays 2010;32:894-904.  Back to cited text no. 43
    
44.
Kaboli PJ, Rahmat A, Ismail P, Ling KH. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res 2015;97:104-21.  Back to cited text no. 44
    
45.
Reshmi G, Pillai MR. Beyond HPV: Oncomirs as new players in cervical cancer. FEBS Lett 2008;582:4113-6.  Back to cited text no. 45
    
46.
Chen P, Price C, Li Z, Li Y, Cao D, Wiley A, et al. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proc Natl Acad Sci U S A 2013;110:11511-6.  Back to cited text no. 46
    
47.
Zhou H, Xiao B, Zhou F, Deng H, Zhang X, Lou Y, et al. MiR-421 is a functional marker of circulating tumor cells in gastric cancer patients. Biomarkers 2012;17:104-10.  Back to cited text no. 47
    
48.
Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C, et al. The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 2010;70:3833-42.  Back to cited text no. 48
    
49.
Tsai KW, Liao YL, Wu CW, Hu LY, Li SC, Chan WC, et al. Aberrant expression of miR-196a in gastric cancers and correlation with recurrence. Genes Chromosomes Cancer 2012;51:394-401.  Back to cited text no. 49
    
50.
Mandal CC, Ghosh-Choudhury T, Dey N, Choudhury GG, Ghosh-Choudhury N. miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis 2012;33:1897-908.  Back to cited text no. 50
    
51.
Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K, et al. Transforming growth factor-ß regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 2011;30:1470-80.  Back to cited text no. 51
    
52.
Acunzo M, Romano G, Palmieri D, Laganá A, Garofalo M, Balatti V, et al. Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2. Proc Natl Acad Sci U S A 2013;110:8573-8.  Back to cited text no. 52
    
53.
Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A 2008;105:15535-40.  Back to cited text no. 53
    
54.
Moch H, Lukamowicz-Rajska M. miR-30c-2-3p and miR-30a-3p: New pieces of the jigsaw puzzle in HIF2a regulation. Cancer Discov 2014;4:22-4.  Back to cited text no. 54
    
55.
Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004;303:83-6.  Back to cited text no. 55
    
56.
Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, Thai TH, et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005;6:R71.  Back to cited text no. 56
    
57.
van den Berg A, Kroesen BJ, Kooistra K, de Jong D, Briggs J, Blokzijl T, et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 2003;37:20-8.  Back to cited text no. 57
    
58.
Tam W. Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene 2001;274:157-67.  Back to cited text no. 58
    
59.
Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005;207:243-9.  Back to cited text no. 59
    
60.
Haasch D, Chen YW, Reilly RM, Chiou XG, Koterski S, Smith ML, et al. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cell Immunol 2002;217:78-86.  Back to cited text no. 60
    
61.
Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 2005;102:18081-6.  Back to cited text no. 61
    
62.
Cobb BS, Nesterova TB, Thompson E, Hertweck A, O'Connor E, Godwin J, et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 2005;201:1367-73.  Back to cited text no. 62
    
63.
Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K. Aberrant T cell differentiation in the absence of Dicer. J Exp Med 2005;202:261-9.  Back to cited text no. 63
    
64.
Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005;123:819-31.  Back to cited text no. 64
    
65.
Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 2008;3:e2141.  Back to cited text no. 65
    
66.
Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Löwenberg B. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008;111:5078-85.  Back to cited text no. 66
    
67.
Nervi C, Fazi F, Rosa A, Fatica A, Bozzoni I. Emerging role for microRNAs in acute promyelocytic leukemia. Curr Top Microbiol Immunol 2007;313:73-84.  Back to cited text no. 67
    
68.
De Marchis ML, Ballarino M, Salvatori B, Puzzolo MC, Bozzoni I, Fatica A. A new molecular network comprising PU.1, interferon regulatory factor proteins and miR-342 stimulates ATRA-mediated granulocytic differentiation of acute promyelocytic leukemia cells. Leukemia 2009;23:856-62.  Back to cited text no. 68
    
69.
Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 2007;26:4148-57.  Back to cited text no. 69
    
70.
Zhong H, Wang HR, Yang S, Zhong JH, Wang T, Wang C, et al. Targeting Smad4 links microRNA-146a to the TGF-beta pathway during retinoid acid induction in acute promyelocytic leukemia cell line. Int J Hematol 2010;92:129-35.  Back to cited text no. 70
    
71.
Ghaffari SH, Bashash D, Dizaji MZ, Ghavamzadeh A, Alimoghaddam K. Alteration in miRNA gene expression pattern in acute promyelocytic leukemia cell induced by arsenic trioxide: A possible mechanism to explain arsenic multi-target action. Tumour Biol 2012;33:157-72.  Back to cited text no. 71
    
72.
Liang H, Li X, Wang L, Yu S, Xu Z, Gu Y, et al. MicroRNAs contribute to promyelocyte apoptosis in As2O3-treated APL cells. Cell Physiol Biochem 2013;32:1818-29.  Back to cited text no. 72
    
73.
Chabot S, Teissié J, Golzio M. Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR. Adv Drug Deliv Rev 2015;81:161-8.  Back to cited text no. 73
    
74.
Davalos A, Suarez Y. MiRNA-based therapy: From bench to bedside. Pharmacol Res 2013;75:1-2.  Back to cited text no. 74
    
75.
Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 2010;28:341-7.  Back to cited text no. 75
    
76.
Ma F, Zhang J, Zhong L, Wang L, Liu Y, Wang Y, et al. Upregulated microRNA-301a in breast cancer promotes tumor metastasis by targeting PTEN and activating Wnt/ß-catenin signaling. Gene 2014;535:191-7.  Back to cited text no. 76
    
77.
McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Libra M, et al. Targeting breast cancer initiating cells: Advances in breast cancer research and therapy. Adv Biol Regul 2014;56:81-107.  Back to cited text no. 77
    
78.
Ebert MS, Sharp PA. MicroRNA sponges: Progress and possibilities. RNA 2010;16:2043-50.  Back to cited text no. 78
    
79.
Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010;12:247-56.  Back to cited text no. 79
    
80.
Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res 2010;70:7027-30.  Back to cited text no. 80
    
81.
Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol 2013;31:577.  Back to cited text no. 81
    
82.
Bader AG. miR-34 – A microRNA replacement therapy is headed to the clinic. Front Genet 2012;3:120.  Back to cited text no. 82
    
83.
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131:1109-23.  Back to cited text no. 83
    
84.
Nickel A, Stadler SC. Role of epigenetic mechanisms in epithelial-to-mesenchymal transition of breast cancer cells. Transl Res 2015;165:126-42.  Back to cited text no. 84
    
85.
Kota SK, Balasubramanian S. Cancer therapy via modulation of micro RNA levels: A promising future. Drug Discov Today 2010;15:733-40.  Back to cited text no. 85
    
86.
Sharifi M, Salehi R, Gheisari Y, Kazemi M. Inhibition of microRNA miR-92a induces apoptosis and necrosis in human acute promyelocytic leukemia. Adv Biomed Res 2014;3:61.  Back to cited text no. 86
[PUBMED]  Medknow Journal  
87.
Sharifi M, Salehi R, Gheisari Y, Kazemi M. Inhibition of microRNA miR-92a induces apoptosis and inhibits cell proliferation in human acute promyelocytic leukemia through modulation of p63 expression. Mol Biol Rep 2014;41:2799-808.  Back to cited text no. 87
    
88.
Sharifi M, Salehi R, Gheisari Y, Kazemi M. Inhibition of MicroRNA miR-92a inhibits cell proliferation in human acute promyelocytic leukemia. Turk J Haematol 2013;30:157-62.  Back to cited text no. 88