Is there any Correlation between Magnetic Resonance Imaging Features of Breast Lesions of BIRADS Category 4 with Histopathologic Results?

Document Type : Original Article

Authors

Department of Radiology, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: To evaluate the correlation of magnetic resonance imaging (MRI) features of breast lesions of Breast Imaging Reporting and Database System (BI-RADS) category 4 with histopathologic results. Materials and Methods: In a prospective study between December 2013 and April 2015, patients with suspicious mammographic and/or ultrasound findings referred for Breast MRI were evaluated. Patients with lesions of BI-RADS category 4 were enrolled with a written informed consent. In each patient, mass lesion (ML) or nonmass lesion (NML) was determined, and different characteristics of the lesions were recorded. A follow-up program was taken with mean 3–12 months. Patients who underwent core needle biopsy or open biopsy were summoned. Results: Seventy-eight females aged 24–67 years (mean 43.1 ± 8.8) met the inclusion criteria and had adequate samples for histopathologic study. Twenty-nine (37.2%) patients had ML and 49 (62.8%) patients had NML. Tissue sampling in 63 (80.7%) patients was through core needle biopsy and in 15 (19.2%) patients through surgery. A wide spectrum of benign and malignant pathologic diagnoses was seen. In statistical analysis, none of the MRI features has a significant correlation with any specific histopathologic diagnosis (P = 0.185). However, the relation between the MRI category (ML or NML) and pathology results was significant at level of 0.1 (P = 0.06). Conclusion: This study showed that a wide spectrum of histopathologic results is seen in BI-RADS category 4. However, in this sample volume, none of the MRI features in this BI-RADS category has a significant correlation with any specific histopathologic diagnosis.

Keywords

1.
Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 2001;220:13-30.  Back to cited text no. 1
    
2.
Wasif N, Garreau J, Terando A, Kirsch D, Mund DF, Giuliano AE. MRI versus ultrasonography and mammography for preoperative assessment of breast cancer. Am Surg 2009;75:970-5.  Back to cited text no. 2
    
3.
Dang CM, Zaghiyan K, Karlan SR, Phillips EH. Increased use of MRI for breast cancer surveillance and staging is not associated with increased rate of mastectomy. Am Surg 2009;75:937-40.  Back to cited text no. 3
    
4.
Nouri-Neuville M, de Rocquancourt A, Cohen-Zarade S, Chapellier-Canaud M, Albiter M, Hamy AS, et al. Correlation between MRI and biopsies under second look ultrasound. Diagn Interv Imaging 2014;95:197-211.  Back to cited text no. 4
    
5.
Abramovici G, Mainiero MB. Screening breast MR imaging: Comparison of interpretation of baseline and annual follow-up studies. Radiology 2011;259:85-91.  Back to cited text no. 5
    
6.
Mahoney MC, Gatsonis C, Hanna L, DeMartini WB, Lehman C. Positive predictive value of BI-RADS MR imaging. Radiology 2012;264:51-8.  Back to cited text no. 6
    
7.
Lehman CD, Smith RA. The role of MRI in breast cancer screening. J Natl Compr Canc Netw 2009;7:1109-15.  Back to cited text no. 7
    
8.
Gutierrez RL, DeMartini WB, Eby PR, Kurland BF, Peacock S, Lehman CD. BI-RADS lesion characteristics predict likelihood of malignancy in breast MRI for masses but not for nonmasslike enhancement. AJR Am J Roentgenol 2009;193:994-1000.  Back to cited text no. 8
    
9.
Gity M, Ghazi Moghadam K, Jalali AH, Shakiba M. Association of different MRI BIRADS descriptors with malignancy in non mass-like breast lesions. Iran Red Crescent Med J 2014;16:e26040.  Back to cited text no. 9
    
10.
American College of Radiology. Breast Imaging Reporting, Data System (BI-RADS). 5th ed. Available on www.acr.org  Back to cited text no. 10
    
11.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90.  Back to cited text no. 11
    
12.
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013;63:11-30.  Back to cited text no. 12
    
13.
Sirous M, Sirous R, Nejad FK, Rabeie E, Mansouri M. Evaluation of different aspects of power Doppler sonography in differentiating and prognostication of breast masses. J Res Med Sci 2015;20:133-9.  Back to cited text no. 13
    
14.
Warner E, Messersmith H, Causer P, Eisen A, Shumak R, Plewes D. Systematic review: Using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med 2008;148:671-9.  Back to cited text no. 14
    
15.
Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 2007;57:75-89.  Back to cited text no. 15
    
16.
Sakamoto N, Tozaki M, Higa K, Tsunoda Y, Ogawa T, Abe S, et al. Categorization of non-mass-like breast lesions detected by MRI. Breast Cancer 2008;15:241-6.  Back to cited text no. 16
    
17.
Liberman L, Morris EA, Lee MJ, Kaplan JB, LaTrenta LR, Menell JH, et al. Breast lesions detected on MR imaging: features and positive predictive value. AJR Am J Roentgenol 2002;179:171-8.  Back to cited text no. 17
    
18.
Morakkabati-Spitz N, Leutner C, Schild H, Traeber F, Kuhl C. Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI. Eur Radiol 2005;15:2010-7.  Back to cited text no. 18
    
19.
Tozaki M, Igarashi T, Fukuda K. Breast MRI using the VIBE sequence: Clustered ring enhancement in the differential diagnosis of lesions showing non-masslike enhancement. AJR Am J Roentgenol 2006;187:313-21.  Back to cited text no. 19