Cornea Collagen Cross-linking for Keratoconus: A Comparison between Accelerated and Conventional Methods

Document Type : Original Article


Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran


Background: Keratoconus is a progressive degenerative disorder of the cornea in which structural changes in the cornea cause it to become thin and conical in shape. Recently, collagen cross-linking (CXL) has been introduced as an effective intervention in management of progressive keratoconus. Accelerated CXL is a new protocol of this procedure which reduces corneal ultraviolet irradiation exposure time to 5 min. This study aimed to compare visual acuity, keratometry and topographic criteria of keratoconic eyes after conventional and accelerated CXL with a six-month follow-up. Materials and Methods: In this prospective interventional study we assessed eyes of 40 patients. Patients were divided into two groups randomly. One group underwent accelerated (5 min) CXL and the other underwent conventional (30 min) CXL. Visual acuity, topographic criteria and keratometry were assessed preoperatively and 6 months postoperatively. Results: In the present study we assessed 40 patients, 50% of which were right eye (OD) and 50% were left eye (OS). Mean age of patients in the accelerated group was 22.10 and in the conventional group was 22.80 years. Our results showed no significant differences between visual acuity, keratometric and topographic criteria in the two groups before intervention. Likewise our results manifested no significant difference between visual acuity, keratometric, refractive and topographic criteria after intervention. Conclusion: According to our survey topographic criteria and keratometry improvement in the accelerated and conventional protocol are the same. So accelerated protocol is suggested as a safe and effective option for management of progressive keratoconus.


Kanellopoulos AJ, Binder PS. Collagen cross-linking (CCL) with sequential topography-guided PRK: A temporizing alternative for keratoconus to penetrating keratoplasty. Cornea 2007;26:891-5.  Back to cited text no. 1
Vinciguerra P, Albé E, Frueh BE, Trazza S, Epstein D. Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. Am J Ophthalmol 2012;154:520-6.  Back to cited text no. 2
Wittig-Silva C, Whiting M, Lamoureux E, Lindsay RG, Sullivan LJ, Snibson GR. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: Preliminary results. J Refract Surg 2008;24:S720-5.  Back to cited text no. 3
Wollensak G. Crosslinking treatment of progressive keratoconus: New hope. Curr Opin Ophthalmol 2006;17:356-60.  Back to cited text no. 4
Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A–induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003;135:620-7.  Back to cited text no. 5
Vega-Estrada A, Alió JL, Plaza Puche AB, Marshall J. Outcomes of a new microwave procedure followed by accelerated cross-linking for the treatment of keratoconus: A pilot study. J Refract Surg 2012;28:787-93.  Back to cited text no. 6
Touboul D, Efron N, Smadja D, Praud D, Malet F, Colin J. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. J Refract Surg 2012;28:769-76.  Back to cited text no. 7
Matalia H, Shetty R, Dhamodaran K, Subramani M, Arokiaraj V, Das D. Potential apoptotic effect of ultraviolet-A irradiation during cross-linking: A study on ex vivo cultivated limbal epithelial cells. Br J Ophthalmol 2012;96:1339-45.  Back to cited text no. 8
Tamayo GE. Predictable visual outcomes with accelerated corneal cross-linking concurrent with laser in situ keratomileusis. J Cataract Refract Surg 2012;38:2206.  Back to cited text no. 9
Real LP, Rocha AP, Gardette JL. Artificial accelerated weathering of poly (vinyl chloride) for outdoor applications: The evolution of the mechanical and molecular properties. Polym Degrad Stab 2003;82:235-43.  Back to cited text no. 10
Ghanem RC, Netto MV, Ghanem VC, Santhiago MR, Wilson SE. Peripheral sterile corneal ring infiltrate after riboflavin-UVA collagen cross-linking in keratoconus. Cornea 2012;31:702-5.  Back to cited text no. 11
Henriquez MA, Izquierdo L Jr, Bernilla C, Zakrzewski PA, Mannis M. Riboflavin/Ultraviolet a corneal collagen cross-linking for the treatment of keratoconus: Visual outcomes and Scheimpflug analysis. Cornea 2011;30:281-6.  Back to cited text no. 12
Hovakimyan M, Guthoff R, Knappe S, Zhivov A, Wree A, Krüger A, et al. Short-term corneal response to cross-linking in rabbit eyes assessed by in vivo confocal laser scanning microscopy and histology. Cornea 2011;30:196-203.  Back to cited text no. 13
Caporossi A, Mazzotta C, Baiocchi S, Caporossi T. Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: The Siena eye cross study. Am J Ophthalmol 2010;149:585-93.  Back to cited text no. 14
Agrawal VB. Corneal collagen cross-linking with riboflavin and ultraviolet-A light for keratoconus: Results in Indian eyes. Indian J Ophthalmol 2009;57:111-4.  Back to cited text no. 15
[PUBMED]  Medknow Journal  
Mencucci R, Paladini I. Corneal cross-linking for keratoconus. Acta Ophthalmologica. 2008;86.  Back to cited text no. 16
Celik HU, Alagöz N, Yildirim Y, Agca A, Marshall J, Demirok A, et al. Accelerated corneal crosslinking concurrent with laser in situ keratomileusis. J Cataract Refract Surg 2012;38:1424-31.  Back to cited text no. 17