1. |
Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissén M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001;24:683-9.
|
2. |
Alberti KG, Zimmet P, Shaw J. The metabolic syndrome – A new worldwide definition. A consensus statement from the International Diabetes Federation. Lancet 2005;366:1059-62.
|
3. |
Roche HM, Phillips C, Gibney MJ. The metabolic syndrome: The crossroads of diet and genetics. Proc Nutr Soc 2005;64:371-7.
|
4. |
Kelishadi R, Ardalan G, Gheiratmand R, Adeli K, Delavari A, Majdzadeh R. Caspian Study Group. Paediatric metabolic syndrome and associated anthropometric indices: The CASPIAN study. Acta Paediatr 2006;95:1625-34.
|
5. |
Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 2001;294:169-73.
|
6. |
Hodoglugil U, Tanyolaç S, Williamson DW, Huang Y, Mahley RW. Apolipoprotein A-V: A potential modulator of plasma triglyceride levels in Turks. J Lipid Res 2006;47:144-53.
|
7. |
Hubacek JA. Apolipoprotein A5 and triglyceridemia. Focus on the effects of the common variants. Clin Chem Lab Med 2005;43:897-902.
|
8. |
Nilsson SK, Heeren J, Olivecrona G, Merkel M. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 2011;219:15-21.
|
9. |
Halalkhor S, Jalali F, Tilaki KH, Shojaei S. Association of two common polymorphisms of apolipoprotein A5 gene with metabolic syndrome indicators in a North Iranian population, a cross-sectional study. J Diabetes Metab Disord 2014;13:48.
|
10. |
Fallah MS, Sedaghatikhayat B, Guity K, Akbari F, Azizi F, Daneshpour M. The relation between metabolic syndrome risk factors and genetic variations of apolipoprotein V in relation with serum triglyceride and HDL-C Level. Arch Iran Med 2016;19:46-50.
|
11. |
Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Mol Cell Biol 2012;13:239-51.
|
12. |
Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat 2012;33:254-63.
|
13. |
Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 2010;11:354-61.
|
14. |
Hu Z, Bruno AE. The influence of 3'UTRs on MicroRNA function inferred from human SNP data. Comp Funct Genomics 2011;2011:910769.
|
15. |
Lin PC, Liu TC, Chang CC, Chen YH, Chang JG. High-resolution melting (HRM) analysis for the detection of single nucleotide polymorphisms in microRNA target sites. Clin Chim Acta 2012;413:1092-7.
|
16. |
Ziebarth JD, Bhattacharya A, Chen A, Cui Y. PolymiRTS database 2.0: Linking polymorphisms in microRNA target sites with human diseases and complex traits. Nucleic Acids Res 2012;40:D216-21.
|
17. |
Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet 2008;24:489-97.
|
18. |
Bandiera S, Hatem E, Lyonnet S, Henrion-Caude A. MicroRNAs in diseases: From candidate to modifier genes. Clin Genet 2010;77:306-13.
|
19. |
Bao BY, Pao JB, Huang CN, Pu YS, Chang TY, Lan YH, et al. Polymorphisms inside microRNAs and microRNA target sites predict clinical outcomes in prostate cancer patients receiving androgen-deprivation therapy. Clin Cancer Res 2011;17:928-36.
|
20. |
Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: A gold mine for molecular epidemiology. Carcinogenesis 2008;29:1306-11.
|
21. |
Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: The implications for cancer research. Nat Rev Cancer 2010;10:389-402.
|
22. |
Wang G, van der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 2008;82:283-9.
|
23. |
Lei SF, Papasian CJ, Deng HW. Polymorphisms in predicted miRNA binding sites and osteoporosis. J Bone Miner Res 2011;26:72-8.
|
24. |
Lv K, Guo Y, Zhang Y, Wang K, Jia Y, Sun S. Allele-specific targeting of hsa-miR-657 to human IGF2R creates a potential mechanism underlying the association of ACAA-insertion/deletion polymorphism with type 2 diabetes. Biochem Biophys Res Commun 2008;374:101-5.
|
25. |
Martin MM, Buckenberger JA, Jiang J, Malana GE, Nuovo GJ, Chotani M, et al. The human angiotensin II type 1 receptor + 1166 A/C polymorphism attenuates microRNA-155 binding. J Biol Chem 2007;282:24262-9.
|
26. |
Update on the task force report on high blood pressure in children and adolescents: A working group report from the National High Blood Pressure Education Program. National High Blood Pressure Education Program Working Group on Hypertension Control in Children and Adolescents. Pediatrics 1996;98(4 Pt 1):649-58.
|
27. |
Bao L, Zhou M, Wu L, Lu L, Goldowitz D, Williams RW, et al. PolymiRTS database: Linking polymorphisms in microRNA target sites with complex traits. Nucleic Acids Res 2007;35:D51-4.
|
28. |
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20.
|
29. |
Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: Targets and expression. Nucleic Acids Res 2008;36:D149-53.
|
30. |
Kraja AT, Vaidya D, Pankow JS, Goodarzi MO, Assimes TL, Kullo IJ, et al. A bivariate genome-wide approach to metabolic syndrome: STAMPEED consortium. Diabetes 2011;60:1329-39.
|
31. |
Ye Q, Zhao X, Xu K, Li Q, Cheng J, Gao Y, et al. Polymorphisms in lipid metabolism related miRNA binding sites and risk of metabolic syndrome. Gene 2013;528:132-8.
|