Document Type : Original Article
Authors
1 Department of Biology, Faculty of Science, LAPEX-Experimental Parasitology Laboratory, Mérida; Organic Biomolecular Research Group, Research Institute, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida, Venezuela
2 Organic Biomolecular Research Group, Research Institute, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida, Venezuela
3 Department of Biology, Faculty of Science, LAPEX-Experimental Parasitology Laboratory, Mérida, Venezuela
Abstract
Background: Insects are mostly pathogens transmitters, thus the necessity of finding effective bioinsecticides to combat them. In the present investigation, the insecticide activity of Ageratina jahnii and Ageratina pichinchensis (Asteraceae) essential oils, methanol, and aqueous extracts was evaluated against Lutzomyia migonei (Diptera: Psychodidae) females, Leishmania transmitters, a wide distributed parasitosis in Latin America. Materials and Methods: All extracts were prepared by maceration at room temperature, and essential oils were obtained by hydrodistillation process. Females of L. migonei were used in the bioassays using the adulticide test in pots. Results: Essential oils from both assayed plant species showed 100% of L. migonei mortality at 48 h of exposure at the concentration of 10 mg/ml. A. jahnii essential oil exhibited the following values, LD50 = 0.39 mg/ml, LD90 = 1.57 mg/ml, LD95 = 2.31 mg/ml, and LD99 = 4.80 mg/ml while for A. pichinchensis essential oil values were LD50 = 0.31 mg/ml, LD90 = 0.99 mg/ml, LD95 = 1.38 mg/ml, and LD99 = 2.55 mg/ml. Conclusion: Higher toxicity was observed with A. pichinchensis essential oil against L. migonei, comparing to A. jahnii oil. Two new plant species are being reported, showing bioactive properties against common tropical disease vectors such as L. migonei, hence, opening possibilities to a more environmental friendly control.
Keywords
1. | |
2. | |
3. | |
4. | |
5. | |
6. | |
7. | |
8. | |
9. | |
10. | |
11. | |
12. |
Romero-Cerecero O, Zamilpa A, Jiménez-Ferrer JE, Rojas-Bribiesca G, Román-Ramos R, Tortoriello J. Double-blind clinical trial for evaluating the effectiveness and tolerability of Ageratina pichinchensis extract on patients with mild to moderate onychomycosis. A comparative study with ciclopirox. Planta Med 2008;74:1430-5. |
13. | |
14. | |
15. | |
16. | |
17. | |
18. | |
19. | |
20. |
Humboldt A, Bonpland A, Kunth K. Nova genera at species plantarum. Lutetiae parisorum: Sumtibus Librariae Graeco-Latino-Germanico. 4th ed. p. 1815-25. Available from: http://www.dx.doi.org/10.5962/bhl.title.640. [Last acceseed on 2017 Mar 14]. |
21. | |
22. | |
23. | |
24. |
Luitgards-Moura JF, Castellon Bermudez EG, Rocha AF, Tsouris P, Rosa-Freitas MG. Preliminary assays indicate that Antonia ovata (Loganiaceae) and Derris amazonica (Papilionaceae), ichthyotoxic plants used for fishing in Roraima, Brazil, have an insecticide effect on Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae). Mem Inst Oswaldo Cruz 2002;97:737-42. |
25. |
Ireri LN, Kongoro J, Ngure P, Mutai CH, Langat B, Tonui W, et al. The potencial of extracts of Tagetes minuta L. (Asteraceae), Acalypha fruticosa Forssk (Euphorbiaceae) and Tarchonanthus camphorates L. (Compositae) against Phlebotomus duboscqi Neveu Lemaire (Diptera: Psychodidae), the vector for Leishmania major Yakimoff and Schokhor. J Vector Borne Dis 2010;47:168-74. |
26. | |
27. | |
28. |