Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments



1 Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3 Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

4 Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran


The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.


Burmeister LA, Ganguli M, Dodge HH, Toczek T, DeKosky ST, Nebes RD. Hypothyroidism and cognition: Preliminary evidence for a specific defect in memory. Thyroid 2001;11:1177-85.  Back to cited text no. 1
Smith JW, Evans AT, Costall B, Smythe JW. Thyroid hormones, brain function and cognition: A brief review. Neurosci Biobehav Rev 2002;26:45-60.  Back to cited text no. 2
Whybrow PC. Behavioral and psychiatric aspects of hypothyroidism. In: Braverman LE, Utiger RD, eds. The Thyroid: A Fundamental and Clinical Text. 8th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2000. P. 837-842.  Back to cited text no. 3
Whybrow PC, Prange AJ Jr., Treadway CR. Mental changes accompanying thyroid gland dysfunction. A reappraisal using objective psychological measurement. Arch Gen Psychiatry 1969;20:48-63.  Back to cited text no. 4
Dugbartey AT. Neurocognitive aspects of hypothyroidism. Arch Intern Med 1998;158:1413-8.  Back to cited text no. 5
Osterweil D, Syndulko K, Cohen SN, Pettler-Jennings PD, Hershman JM, Cummings JL, et al. Cognitive function in non-demented older adults with hypothyroidism. J Am Geriatr Soc 1992;40:325-35.  Back to cited text no. 6
Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 2007;3:249-59.  Back to cited text no. 7
Zoeller R, Rovet J. Timing of thyroid hormone action in the developing brain: Clinical observations and experimental findings. J Neuroendocrinol 2004;16:809-18.  Back to cited text no. 8
Benowitz LI, Routtenberg A. GAP-43: An intrinsic determinant of neuronal development and plasticity. Trends Neurosci 1997;20:84-91.  Back to cited text no. 9
Huang KP, Huang FL, Jäger T, Li J, Reymann KG, Balschun D. Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J Neurosci 2004;24:10660-9.  Back to cited text no. 10
Silva AJ, Paylor R, Wehner JM, Tonegawa S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 1992;257:206-11.  Back to cited text no. 11
Eichenbaum H. Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron 2004;44:109-20.  Back to cited text no. 12
Squire LR. Memory and brain systems: 1969-2009. J Neurosci 2009;29:12711-6.  Back to cited text no. 13
de Escobar GM, Obregón MJ, del Rey FE. Maternal thyroid hormones early in pregnancy and fetal brain development. Best Pract Res Clin Endocrinol Metab 2004;18:225-48.  Back to cited text no. 14
Ausó E, Lavado-Autric R, Cuevas E, Del Rey FE, Morreale De Escobar G, Berbel P. A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology 2004;145:4037-47.  Back to cited text no. 15
Lavado-Autric R, Ausó E, García-Velasco JV, Arufe Mdel C, Escobar del Rey F, Berbel P, et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest 2003;111:1073-82.  Back to cited text no. 16
Alzoubi KH, Gerges NZ, Alkadhi KA. Levothyroxin restores hypothyroidism-induced impairment of LTP of hippocampal CA1: Electrophysiological and molecular studies. Exp Neurol 2005;195:330-41.  Back to cited text no. 17
Desouza LA, Ladiwala U, Daniel SM, Agashe S, Vaidya RA, Vaidya VA. Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci 2005;29:414-26.  Back to cited text no. 18
Gerges NZ, Alkadhi KA. Hypothyroidism impairs late LTP in CA1 region but not in dentate gyrus of the intact rat hippocampus: MAPK involvement. Hippocampus 2004;14:40-5.  Back to cited text no. 19
Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 1999;341:549-55.  Back to cited text no. 20
Pop VJ, Kuijpens JL, van Baar AL, Verkerk G, van Son MM, de Vijlder JJ, et al. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol (Oxf) 1999;50:149-55.  Back to cited text no. 21
Capet C, Jego A, Denis P, Noel D, Clerc I, Cornier AC, et al. Is cognitive change related to hypothyroidism reversible with replacement therapy? Rev Med Interne 2000;21:672-8.  Back to cited text no. 22
Jensovsky J, Ruzicka E, Spackova N, Hejdukova B. Changes of event related potential and cognitive processes in patients with subclinical hypothyroidism after thyroxine treatment. Endocr Regul 2002;36:115-22.  Back to cited text no. 23
Prinz PN, Scanlan JM, Vitaliano PP, Moe KE, Borson S, Toivola B, et al. Thyroid hormones: Positive relationships with cognition in healthy, euthyroid older men. J Gerontol A Biol Sci Med Sci 1999;54:M111-6.  Back to cited text no. 24
Hulbert AJ. Thyroid hormones and their effects: A new perspective. Biol Rev Camb Philos Soc 2000;75:519-631.  Back to cited text no. 25
Aniello F, Couchie D, Bridoux AM, Gripois D, Nunez J. Splicing of juvenile and adult tau mRNA variants is regulated by thyroid hormone. Proc Natl Acad Sci U S A 1991;88:4035-9.  Back to cited text no. 26
Simonides WS, Brent GA, Thelen MH, van der Linden CG, Larsen PR, van Hardeveld C. Characterization of the promoter of the rat sarcoplasmic endoplasmic reticulum Ca2+-ATPase 1 gene and analysis of thyroid hormone responsiveness. J Biol Chem 1996;271:32048-56.  Back to cited text no. 27
Singh R, Upadhyay G, Kumar S, Kapoor A, Kumar A, Tiwari M, et al. Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in the developing cerebellum. J Endocrinol 2003;176:39-46.  Back to cited text no. 28
Davis FB, Cody V, Davis PJ, Borzynski LJ, Blas SD. Stimulation by thyroid hormone analogues of red blood cell Ca2+-ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system. J Biol Chem 1983;258:12373-7.  Back to cited text no. 29
Paul S, Das S, Sarkar PK. Effect of hypothyroidism on different forms of actin in rat cerebral neuronal cultures studied by an improved DNase I inhibition assay. J Neurochem 1992;59:701-7.  Back to cited text no. 30
Hoch FL. Lipids and thyroid hormones. Prog Lipid Res 1988;27:199-270.  Back to cited text no. 31
Pamplona R, Portero-Otín M, Ruiz C, Bellmunt MJ, Requena JR, Thorpe SR, et al. Thyroid status modulates glycoxidative and lipoxidative modification of tissue proteins. Free Radic Biol Med 1999;27:901-10.  Back to cited text no. 32
Morreale de Escobar G, Obregón MJ, Escobar del Rey F. Is neuropsychological development related to maternal hypothyroidism or to maternal hypothyroxinemia? J Clin Endocrinol Metab 2000;85:3975-87.  Back to cited text no. 33
Pop VJ, Brouwers EP, Vader HL, Vulsma T, van Baar AL, de Vijlder JJ. Maternal hypothyroxinaemia during early pregnancy and subsequent child development: A 3-year follow-up study. Clin Endocrinol (Oxf) 2003;59:282-8.  Back to cited text no. 34
Santisteban P, Bernal J. Thyroid development and effect on the nervous system. Rev Endocr Metab Disord 2005;6:217-28.  Back to cited text no. 35
Bernal J. Thyroid hormones and brain development. Vitam Horm 2005;71:95-122.  Back to cited text no. 36
Goldey ES, Kehn LS, Rehnberg GL, Crofton KM. Effects of developmental hypothyroidism on auditory and motor function in the rat. Toxicol Appl Pharmacol 1995;135:67-76.  Back to cited text no. 37
Akaike M, Kato N, Ohno H, Kobayashi T. Hyperactivity and spatial maze learning impairment of adult rats with temporary neonatal hypothyroidism. Neurotoxicol Teratol 1991;13:317-22.  Back to cited text no. 38
Negishi T, Kawasaki K, Sekiguchi S, Ishii Y, Kyuwa S, Kuroda Y, et al. Attention-deficit and hyperactive neurobehavioural characteristics induced by perinatal hypothyroidism in rats. Behav Brain Res 2005;159:323-31.  Back to cited text no. 39
Sui L, Anderson WL, Gilbert ME. Impairment in short-term but enhanced long-term synaptic potentiation and ERK activation in adult hippocampal area CA1 following developmental thyroid hormone insufficiency. Toxicol Sci 2005;85:647-56.  Back to cited text no. 40
Gilbert ME, Sui L. Dose-dependent reductions in spatial learning and synaptic function in the dentate gyrus of adult rats following developmental thyroid hormone insufficiency. Brain Res 2006;1069:10-22.  Back to cited text no. 41
Kobayashi K, Tsuji R, Yoshioka T, Kushida M, Yabushita S, Sasaki M, et al. Effects of hypothyroidism induced by perinatal exposure to PTU on rat behavior and synaptic gene expression. Toxicology 2005;212:135-47.  Back to cited text no. 42
Hosseini M, Shafei MN, Safari V, Taiarani Z, Kafami Ladani M, Sadeghian R. The effects of olibanum administered to methimazole-treated dams during lactation on learning and memory of offspring rats. Nat Prod Res 2012;26:1544-8.  Back to cited text no. 43
Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 2002;12:578-84.  Back to cited text no. 44
Ehninger D, Kempermann G. Paradoxical effects of learning the Morris water maze on adult hippocampal neurogenesis in mice may be explained by a combination of stress and physical activity. Genes Brain Behav 2006;5:29-39.  Back to cited text no. 45
Montero-Pedrazuela A, Venero C, Lavado-Autric R, Fernández-Lamo I, García-Verdugo JM, Bernal J, et al. Modulation of adult hippocampal neurogenesis by thyroid hormones: Implications in depressive-like behavior. Mol Psychiatry 2006;11:361-71.  Back to cited text no. 46
Hosseini M, Hadjzadeh MA, Derakhshan M, Havakhah S, Rassouli FB, Rakhshandeh H, et al. The beneficial effects of olibanum on memory deficit induced by hypothyroidism in adult rats tested in Morris water maze. Arch Pharm Res 2010;33:463-8.  Back to cited text no. 47
Jones MW, McHugh TJ. Updating hippocampal representations: CA2 joins the circuit. Trends Neurosci 2011;34:526-35.  Back to cited text no. 48
Hasegawa M, Kida I, Wada H. A volumetric analysis of the brain and hippocampus of rats rendered perinatal hypothyroid. Neurosci Lett 2010;479:240-4.  Back to cited text no. 49
Cattani D, Goulart PB, Cavalli VL, Winkelmann-Duarte E, Dos Santos AQ, Pierozan P, et al. Congenital hypothyroidism alters the oxidative status, enzyme activities and morphological parameters in the hippocampus of developing rats. Mol Cell Endocrinol 2013;375:14-26.  Back to cited text no. 50
Gong J, Dong J, Wang Y, Xu H, Wei W, Zhong J, et al. Developmental iodine deficiency and hypothyroidism impair neural development, up-regulate caveolin-1 and down-regulate synaptophysin in rat hippocampus. J Neuroendocrinol 2010;22:129-39.  Back to cited text no. 51
Bezzi P, Domercq M, Vesce S, Volterra A. Neuron-astrocyte cross-talk during synaptic transmission: Physiological and neuropathological implications. Prog Brain Res 2001;132:255-65.  Back to cited text no. 52
Kettenmann H, Ransom B. Neuroglia. New York: Oxford University Press; 1995.  Back to cited text no. 53
Rami A, Rabié A, Patel AJ. Thyroid hormone and development of the rat hippocampus: Cell acquisition in the dentate gyrus. Neuroscience 1986;19:1207-16.  Back to cited text no. 54
Dong J, Yin H, Liu W, Wang P, Jiang Y, Chen J. Congenital iodine deficiency and hypothyroidism impair LTP and decrease C-fos and C-jun expression in rat hippocampus. Neurotoxicology 2005;26:417-26.  Back to cited text no. 55
Vara H, Martínez B, Santos A, Colino A. Thyroid hormone regulates neurotransmitter release in neonatal rat hippocampus. Neuroscience 2002;110:19-28.  Back to cited text no. 56
Shuaib A, Ijaz S, Hemmings S, Galazka P, Ishaqzay R, Liu L, et al. Decreased glutamate release during hypothyroidism may contribute to protection in cerebral ischemia. Exp Neurol 1994;128:260-5.  Back to cited text no. 57
Hrabovszky E, Turi GF, Kalló I, Liposits Z. Expression of vesicular glutamate transporter-2 in gonadotropin-releasing hormone neurons of the adult male rat. Endocrinology 2004;145:4018-21.  Back to cited text no. 58
Sui L, Wang F, Li BM. Adult-onset hypothyroidism impairs paired-pulse facilitation and long-term potentiation of the rat dorsal hippocampo-medial prefrontal cortex pathway in vivo. Brain Res 2006;1096:53-60.  Back to cited text no. 59
Alzoubi KH, Gerges NZ, Aleisa AM, Alkadhi KA. Levothyroxin restores hypothyroidism-induced impairment of hippocampus-dependent learning and memory: Behavioral, electrophysiological, and molecular studies. Hippocampus 2009;19:66-78.  Back to cited text no. 60
Oziol L, Faure P, Bertrand N, Chomard P. Inhibition of in vitro macrophage-induced low density lipoprotein oxidation by thyroid compounds. J Endocrinol 2003;177:137-46.  Back to cited text no. 61
Dursun B, Dursun E, Capraz I, Ozben T, Apaydin A, Suleymanlar G. Are uremia, diabetes, and atherosclerosis linked with impaired antioxidant mechanisms? J Investig Med 2008;56:545-52.  Back to cited text no. 62
Torun AN, Kulaksizoglu S, Kulaksizoglu M, Pamuk BO, Isbilen E, Tutuncu NB. Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clin Endocrinol (Oxf) 2009;70:469-74.  Back to cited text no. 63
Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 2011;14:2013-54.  Back to cited text no. 64
Mano T, Sinohara R, Sawai Y, Oda N, Nishida Y, Mokumo T, et al. Changes in lipid peroxidation and free radical scavengers in the brain of hyper- and hypothyroid aged rats. J Endocrinol 1995;147:361-5.  Back to cited text no. 65
Alva-Sánchez C, Ortiz-Butrón R, Pacheco-Rosado J. Kainic acid does not affect CA3 hippocampal region pyramidal cells in hypothyroid rats. Brain Res Bull 2004;63:167-71.  Back to cited text no. 66
Rivas M, Naranjo JR. Thyroid hormones, learning and memory. Genes Brain Behav 2007;6 Suppl 1:40-4.  Back to cited text no. 67
Farrokhi E, Hosseini M, Beheshti F, Vafaee F, Hadjzadeh MA, Dastgheib SS. Brain tissues oxidative damage as a possible mechanism of deleterious effects of propylthiouracil- induced hypothyroidism on learning and memory in neonatal and juvenile growth in rats. Basic Clin Neurosci 2014;5:285-94.  Back to cited text no. 68
Mogulkoc R, Baltaci AK, Aydin L, Oztekin E, Sivrikaya A. The effect of thyroxine administration on lipid peroxidation in different tissues of rats with hypothyroidism. Acta Physiol Hung 2005;92:39-46.  Back to cited text no. 69
Rahaman SO, Ghosh S, Mohanakumar KP, Das S, Sarkar PK. Hypothyroidism in the developing rat brain is associated with marked oxidative stress and aberrant intraneuronal accumulation of neurofilaments. Neurosci Res 2001;40:273-9.  Back to cited text no. 70
Ahmed OM, Ahmed RG, El-Gareib AW, El-Bakry AM, Abd El-Tawab SM. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II-the developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int J Dev Neurosci 2012;30:517-37.  Back to cited text no. 71
Das K, Chainy GB. Thyroid hormone influences antioxidant defense system in adult rat brain. Neurochem Res 2004;29:1755-66.  Back to cited text no. 72
Bhanja S, Jena S. Modulation of antioxidant enzyme expression by PTU-induced hypothyroidism in cerebral cortex of postnatal rat brain. Neurochem Res 2013;38:42-9.  Back to cited text no. 73
Pan T, Zhong M, Zhong X, Zhang Y, Zhu D. Levothyroxine replacement therapy with Vitamin E supplementation prevents oxidative stress and cognitive deficit in experimental hypothyroidism. Endocrine 2013;43:434-9.  Back to cited text no. 74
Cano-Europa E, Pérez-Severiano F, Vergara P, Ortiz-Butrón R, Ríos C, Segovia J, et al. Hypothyroidism induces selective oxidative stress in amygdala and hippocampus of rat. Metab Brain Dis 2008;23:275-87.  Back to cited text no. 75
Jena S, Anand C, Chainy GB, Dandapat J. Induction of oxidative stress and inhibition of superoxide dismutase expression in rat cerebral cortex and cerebellum by PTU-induced hypothyroidism and its reversal by curcumin. Neurol Sci 2012;33:869-73.  Back to cited text no. 76
Bhanja S, Chainy GB. PTU-induced hypothyroidism modulates antioxidant defence status in the developing cerebellum. Int J Dev Neurosci 2010;28:251-62.  Back to cited text no. 77
Arrica M, Bissonnette B. Therapeutic hypothermia. Semin Cardiothorac Vasc Anesth. 2007;11:6-15.  Back to cited text no. 78
Doyle KP, Suchland KL, Ciesielski TM, Lessov NS, Grandy DK, Scanlan TS, et al. Novel thyroxine derivatives, thyronamine and 3-iodothyronamine, induce transient hypothermia and marked neuroprotection against stroke injury. Stroke 2007;38:2569-76.  Back to cited text no. 79
Schmitt KR, Diestel A, Lehnardt S, Schwartlander R, Lange PE, Berger F, et al. Hypothermia suppresses inflammation via ERK signaling pathway in stimulated microglial cells. J Neuroimmunol 2007;189:7-16.  Back to cited text no. 80
Oppenheimer JH, Schwartz HL. Molecular basis of thyroid hormone-dependent brain development. Endocr Rev 1997;18:462-75.  Back to cited text no. 81
Paul S, Gharami K, Das S, Sarkar PK. Thyroid hormone-induced maturation of astrocytes is associated with the expression of new variants of vimentin and their phosphorylation. J Neurochem 1999;73:1964-72.  Back to cited text no. 82
Poddar R, Paul S, Chaudhury S, Sarkar PK. Regulation of actin and tubulin gene expression by thyroid hormone during rat brain development. Brain Res Mol Brain Res 1996;35:111-8.  Back to cited text no. 83
Ghosh S, Rahaman SO, Sarkar PK. Regulation of neurofilament gene expression by thyroid hormone in the developing rat brain. Neuroreport 1999;10:2361-5.  Back to cited text no. 84
Biswas SC, Pal U, Sarkar PK. Regulation of cytoskeletal proteins by thyroid hormone during neuronal maturation and differentiation. Brain Res 1997;757:245-53.  Back to cited text no. 85
Rahaman SO, Ghosh S, Mandal SK, Sarkar PK. Reduced expression and altered distribution of neurofilaments in neurons cultured in thyroid hormone-deficient medium. Neuroreport 2000;11:2717-22.  Back to cited text no. 86
Julien JP, Mushynski WE. Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol 1998;61:1-23.  Back to cited text no. 87
Collard JF, Côté F, Julien JP. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 1995;375:61-4.  Back to cited text no. 88
Cleveland DW. Neuronal growth and death: Order and disorder in the axoplasm. Cell 1996;84:663-6.  Back to cited text no. 89
Beal MF. Oxidative damage in neurodegenerative diseases. Neuroscientist 1997;3:21-7.  Back to cited text no. 90
Zamoner A, Heimfarth L, Pessoa-Pureur R. Congenital hypothyroidism is associated with intermediate filament misregulation, glutamate transporters down-regulation and MAPK activation in developing rat brain. Neurotoxicology 2008;29:1092-9.  Back to cited text no. 91
Jung C, Yabe JT, Shea TB. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity. Brain Res 2000;856:12-9.  Back to cited text no. 92
Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 2007;313:2098-109.  Back to cited text no. 93
Seki E, Brenner DA, Karin M. A liver full of JNK: Signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 2012;143:307-20.  Back to cited text no. 94
Sherrin T, Blank T, Todorovic C. c-Jun N-terminal kinases in memory and synaptic plasticity. Rev Neurosci 2011;22:403-10.  Back to cited text no. 95
Danbolt NC. Glutamate uptake. Prog Neurobiol 2001;65:1-105.  Back to cited text no. 96
Gras G, Porcheray F, Samah B, Leone C. The glutamate-glutamine cycle as an inducible, protective face of macrophage activation. J Leukoc Biol 2006;80:1067-75.  Back to cited text no. 97
Dringen R, Hirrlinger J. Glutathione pathways in the brain. Biol Chem 2003;384:505-16.  Back to cited text no. 98
Coulter DA, Eid T. Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 2012;60:1215-26.  Back to cited text no. 99
Baas D, Fressinaud C, Vitkovic L, Sarlieve LL. Glutamine synthetase expression and activity are regulated by 3,5,3'-triodo-L-thyronine and hydrocortisone in rat oligodendrocyte cultures. Int J Dev Neurosci 1998;16:333-40.  Back to cited text no. 100
Ibarrola N, Rodríguez-Peña A. Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development. Brain Res 1997;752:285-93.  Back to cited text no. 101
Tosic M, Torch S, Comte V, Dolivo M, Honegger P, Matthieu JM. Triiodothyronine has diverse and multiple stimulating effects on expression of the major myelin protein genes. J Neurochem 1992;59:1770-7.  Back to cited text no. 102
Hulbert AJ, Else PL. Membranes as possible pacemakers of metabolism. J Theor Biol 1999;199:257-74.  Back to cited text no. 103
Pacheco-Rosado J, Arias-Citalán G, Ortiz-Butrón R, Rodríquez-Páez L, editors. Selective Decrease of Na+/K+-ATPase Activity in the Brain of Hypothyroid Rats. Proc West Pharmacol Soc 2005;48:52-4.  Back to cited text no. 104
Carageorgiou H, Pantos C, Zarros A, Stolakis V, Mourouzis I, Cokkinos D, et al. Changes in acetylcholinesterase, Na +, K +-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats. Metabolism 2007;56:1104-10.  Back to cited text no. 105
Amato A, Barbour B, Szatkowski M, Attwell D. Counter-transport of potassium by the glutamate uptake carrier in glial cells isolated from the tiger salamander retina. J Physiol 1994;479(Pt 3):371-80.  Back to cited text no. 106
Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000;403:316-21.  Back to cited text no. 107
Matsunaga M, Saotome M, Satoh H, Katoh H, Terada H, Hayashi H. Different actions of cardioprotective agents on mitochondrial Ca2 + regulation in a Ca2+ paradox-induced Ca2+ overload. Circ J 2005;69:1132-40.  Back to cited text no. 108
Asayama K, Dobashi K, Hayashibe H, Megata Y, Kato K. Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: A possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinology 1987;121:2112-8.  Back to cited text no. 109
Gonçalves CA, Leite MC, Nardin P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 2008;41:755-63.  Back to cited text no. 110
Berger RP, Beers SR, Richichi R, Wiesman D, Adelson PD. Serum biomarker concentrations and outcome after pediatric traumatic brain injury. J Neurotrauma 2007;24:1793-801.  Back to cited text no. 111
Kleindienst A, Ross Bullock M. A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. J Neurotrauma 2006;23:1185-200.  Back to cited text no. 112
Murabayashi M, Minato M, Okuhata Y, Makimoto M, Hosono S, Masaoka N, et al. Kinetics of serum S100B in newborns with intracranial lesions. Pediatr Int 2008;50:17-22.  Back to cited text no. 113
Tanaka Y, Marumo T, Omura T, Yoshida S. Early increases in serum S100B are associated with cerebral hemorrhage in a rat model of focal cerebral ischemia. Brain Res 2008;1227:248-54.  Back to cited text no. 114
Maschmann J, Erb M, Heinemann MK, Ziemer G, Speer CP. Evaluation of protein S-100 serum concentrations in healthy newborns and seven newborns with perinatal acidosis. Acta Paediatr 2000;89:553-5.  Back to cited text no. 115
Donato R. S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001;33:637-68.  Back to cited text no. 116
Tramontina F, Leite MC, Gonçalves D, Tramontina AC, Souza DF, Frizzo JK, et al. High glutamate decreases S100B secretion by a mechanism dependent on the glutamate transporter. Neurochem Res 2006;31:815-20.  Back to cited text no. 117
Dasgupta A, Das S, Sarkar PK. Thyroid hormone promotes glutathione synthesis in astrocytes by up regulation of glutamate cysteine ligase through differential stimulation of its catalytic and modulator subunit mRNAs. Free Radic Biol Med 2007;42:617-26.  Back to cited text no. 118
Drukarch B, Schepens E, Jongenelen CA, Stoof JC, Langeveld CH. Astrocyte-mediated enhancement of neuronal survival is abolished by glutathione deficiency. Brain Res 1997;770:123-30.  Back to cited text no. 119
Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJ. Free radical biology and medicine: It's a gas, man! Am J Physiol Regul Integr Comp Physiol 2006;291:R491-511.  Back to cited text no. 120
Koga M, Serritella AV, Messmer MM, Hayashi-Takagi A, Hester LD, Snyder SH, et al. Glutathione is a physiologic reservoir of neuronal glutamate. Biochem Biophys Res Commun 2011;409:596-602.  Back to cited text no. 121
Wu PC, Fann MJ, Kao LS. Characterization of Ca2 + signaling pathways in mouse adrenal medullary chromaffin cells. J Neurochem 2010;112:1210-22.  Back to cited text no. 122
Young SH, Rey O, Sternini C, Rozengurt E. Amino acid sensing by enteroendocrine STC-1 cells: Role of the Na+-coupled neutral amino acid transporter 2. Am J Physiol Cell Physiol 2010;298:C1401-13.  Back to cited text no. 123
Chabrier PE, Demerlé-Pallardy C, Auguet M. Nitric oxide synthases: Targets for therapeutic strategies in neurological diseases. Cell Mol Life Sci 1999;55:1029-35.  Back to cited text no. 124
Jonnala RR, Buccafusco JJ. Inhibition of nerve growth factor signaling by peroxynitrite. J Neurosci Res 2001;63:27-34.  Back to cited text no. 125
Yildiz Akar F, Ulak G, Tanyeri P, Erden F, Utkan T, Gacar N. 7-Nitroindazole, a neuronal nitric oxide synthase inhibitor, impairs passive-avoidance and elevated plus-maze memory performance in rats. Pharmacol Biochem Behav 2007;87:434-43.  Back to cited text no. 126
Susswein AJ, Katzoff A, Miller N, Hurwitz I. Nitric oxide and memory. Neuroscientist 2004;10:153-62.  Back to cited text no. 127
Prast H, Philippu A. Nitric oxide as modulator of neuronal function. Prog Neurobiol 2001;64:51-68.  Back to cited text no. 128
Zhuo M, Small SA, Kandel ER, Hawkins RD. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 1993;260:1946-50.  Back to cited text no. 129
Zhuo M, Laitinen JT, Li XC, Hawkins RD. On the respective roles of nitric oxide and carbon monoxide in long-term potentiation in the hippocampus. Learn Mem 1998;5:467-80.  Back to cited text no. 130
Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 1991;14:60-7.  Back to cited text no. 131
Kopf SR, Benton RS, Kalfin R, Giovannini MG, Pepeu G. NO synthesis inhibition decreases cortical ACh release and impairs retention of a conditioned response. Brain Res 2001;894:141-4.  Back to cited text no. 132
Yildirim M, Marangoz C. Effects of nitric oxide on passive avoidance learning in rats. Int J Neurosci 2004;114:597-606.  Back to cited text no. 133
Bon CL, Garthwaite J. On the role of nitric oxide in hippocampal long-term potentiation. J Neurosci 2003;23:1941-8.  Back to cited text no. 134
Böhme GA, Bon C, Stutzmann JM, Doble A, Blanchard JC. Possible involvement of nitric oxide in long-term potentiation. Eur J Pharmacol 1991;199:379-81.  Back to cited text no. 135
Shibuki K, Okada D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 1991;349:326-8.  Back to cited text no. 136
Ueta Y, Levy A, Chowdrey HS, Lightman SL. Hypothalamic nitric oxide synthase gene expression is regulated by thyroid hormones. Endocrinology 1995;136:4182-7.  Back to cited text no. 137
Sinha RA, Pathak A, Mohan V, Bandyopadhyay S, Rastogi L, Godbole MM. Maternal thyroid hormone: A strong repressor of neuronal nitric oxide synthase in rat embryonic neocortex. Endocrinology 2008;149:4396-401.  Back to cited text no. 138
Hosseini M, Dastghaib SS, Rafatpanah H, Hadjzadeh MA, Nahrevanian H, Farrokhi I. Nitric oxide contributes to learning and memory deficits observed in hypothyroid rats during neonatal and juvenile growth. Clinics (Sao Paulo) 2010;65:1175-81.  Back to cited text no. 139
Serfozo Z, Kiss PB, Kukor Z, Lontay B, Palatka K, Varga V, et al. Thyroid hormones affect the level and activity of nitric oxide synthase in rat cerebral cortex during postnatal development. Neurochem Res 2008;33:569-78.  Back to cited text no. 140
Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 2002;33:1451-64.  Back to cited text no. 141
Franco MC, Antico Arciuch VG, Peralta JG, Galli S, Levisman D, López LM, et al. Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. J Biol Chem 2006;281:4779-86.  Back to cited text no. 142
Venditti P, Di Meo S. Thyroid hormone-induced oxidative stress. Cell Mol Life Sci 2006;63:414-34.  Back to cited text no. 143
Packer MA, Stasiv Y, Benraiss A, Chmielnicki E, Grinberg A, Westphal H, et al. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci U S A 2003;100:9566-71.  Back to cited text no. 144