Isolation and Identification of Two Phenolic Compounds from a Moderately Cytotoxic Fraction of Cousinia verbascifolia Bunge

Document Type : Original Article


Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran


Background: Little information is available about chemical components of the Cousinia genus. A primary cytotoxicity screening on Cousinia verbascifolia showed moderate cytotoxic activity against OVCAR-3 ovarian and HT-29 colon cancer cells. Therefore, the aim of this study is a phytochemical investigation to identify the compounds responsible for this bioactivity. Materials and Methods: Extraction was done through percolation and fractionations by reverse phase column chromatography and normal column chromatography. Using standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay Fr.b8 with moderate cytotoxicity was selected for identification of major components. Fr.b8 was subjected to polyamide column chromatography. More purification was done using a new modified recycle high-performance liquid chromatography (HPLC) with flow splitter. Results: Two known compounds: Apigenin (flavone) and caffeic acid (phenolic acid) were obtained from phenolic bioactive fraction for the first time from this plant. Conclusions: Apigenin and caffeic acid with known antitumor and matrix metalloproteinase inhibitory effects seem to be the bioactive components responsible for moderate cytotoxicity of phenolic fraction. Recycle HPLC following with flow splitting is a new method useful for isolation of closely eluted compounds in HPLC chromatogram.


Dutt R, Garg V, Madan AK. Can plants growing in diverse hostile environments provide a vital source of anticancer drugs. J Cancer Ther 2014;10:13-37.  Back to cited text no. 1
Niño J, Narváez DM, Mosquera OM, Correa YM. Antibacterial, antifungal and cytotoxic activities of eight Asteraceae and two Rubiaceae plants from Colombian biodiversity. Braz JMicrobiol2006;37:566-70.  Back to cited text no. 2
Pan L, Chai HB, Kinghorn AD. Discovery of new anticancer agents from higher plants. Front Biosci (Schol Ed) 2012;4:142-56.  Back to cited text no. 3
Attar F, Djavadi SB. A taxonomic revision of Cousinia, sect. Cynaroides (AsteraceaeCardueae) in the flora of Iran. Iran J Bot 2012;16:130-84.  Back to cited text no. 4
Mehregan I. Systematics, Phylogeny and Biogeography of Cousinia (Asteraceae). Ph.D, Thesis, Fachbreich Biologie Der Johannes Gutenberg-Universitat Mainz; 2008.  Back to cited text no. 5
Mehregan I, Kadereit JW. Taxonomic revision of Cousinia sect. Cynaroideae (AsteraceaeCardueae). Willdenowia 2008;38:293-362.  Back to cited text no. 6
Zare M, Khosravi AR, Joharchi MR. Distribution patterns of the genus Cousinia(Asteraceae) in Iran. Iran J Bot 2013;19:127-41.  Back to cited text no. 7
Bohlmann F, Burkhardt T, Zdero C. Naturally Occurring Acetylenes. London: Academic Press; 1973.  Back to cited text no. 8
Alberto Marco J, Juan FS, Albiach R, Rustayian A, Habibi Z. Bisabolene derivatives and sesquiterpene lactones from Cousinia species. Phytochemistry 1993;32:395-400.  Back to cited text no. 9
Rustaiyan A, Niknejad A, Sigari H, Ahmadi A. Guaianolides from Cousinia onopordioides. Fitoterapia 1981;52:31-2.  Back to cited text no. 10
Rustaiyan A, Sharif Z, Sadjadi A. Two farnesol derivatives from Cousinia adenostica. Phytochemistry 1987;26:2635-6.  Back to cited text no. 11
Turdumambetov K, Rakhimov DA, Malikova MK. Oligo-and polysaccharides from Cousinia umbrosa. Molbank 2007;43:308-9.  Back to cited text no. 12
Turdumambetov K, Plekhanova NV, Rakhimov DA, Yagudaev MR. Glucofructans of Cousinia polycephala. Molbank 1989;25:371-2.  Back to cited text no. 13
Plekhanova NV, Turdumambetov K, Sudnitsyna IG. Carbohydrates of Cousinia. Molbank 1983;19:603-4.  Back to cited text no. 14
Ulubelen A, Tuzlaci E, Mericli A. Triterpenic and steroidal compounds from Cousinia canescens. Fitoterapia 1986;57:269-70.  Back to cited text no. 15
lubelen A, Tuzlaci E. Flavonoids and terpenoids from Cousinia eriocephala. Fitoterapia 1988;59:350.  Back to cited text no. 16
Azimova S, Glushenkova A. Lipids, Lipophilic Components and Essential Oils from Plant Sources. London: Springer; 2012. p. 110-3.  Back to cited text no. 17
Shahverdi AR, Khorramizadeh MR, Attar F, Saadat F, Vahid S, Ghahraman A. Concomitant chemopreventive and antibacterial effects of some Iranian plants from the genus Cousinia (Asteraceae). Braz J Pharmacogn 2007;17:325-30.  Back to cited text no. 18
Zarei SM, Ayatollahi AM, Ghanadian M, Kobarfard F, Aghaei M, Choudhary MI, et al. Unusual ingenoids from Euphorbi a erythradeni a Bioss. With pro-apoptotic effects. Fitoterapia 2013;91:87-94.  Back to cited text no. 19
Sajjadi SE, Ghanadian M, Haghighi M, Mouhebat L. Cytotoxic effect of Cousinia verbascifolia Bunge against OVCAR-3 and HT-29 cancer cells. J Herb Med Pharmacol 2015;4:15-9.  Back to cited text no. 20
Markham KR. Techniques of Flavonoid Identification. Vol. 31. London: Academic Press; 1982.  Back to cited text no. 21
Ghanadian M, Sadraei H, Yousuf S, Asghari G, Choudhary MI, Jahed M. New diterpene polyester and phenolic compounds from Pycnocycla spinosa Decne. Ex Boiss with relaxant effects on KCl-induced contraction in rat ileum. Phytochem Lett 2014;7:57-61.  Back to cited text no. 22
Kelley CJ, Harruff RC, Carmack M. Polyphenolic acids of Lithospermum ruderale. II. Carbon-13 nuclear magnetic resonance of lithospermic and rosmarinic acids. J Org Chem 1976;41:449-55.  Back to cited text no. 23
Andary C, Wylde R, Laffite C, Privat G, Winternitz F. Structures of verbascoside and orobanchoside, caffeic acid sugar esters from Orobanche rapum-genistae. Phytochemistry 1982;21:1123-7.  Back to cited text no. 24
Lefort ÉC, Blay J. Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res 2013;57:126-44.  Back to cited text no. 25
Rocha LD, Monteiro MC, Teodoro AJ. Anticancer properties of hydroxycinnamic acids. – A review. Cancer Clin Oncol 2012;1:109-21.  Back to cited text no. 26
Wang W, Heideman L, Chung CS, Pelling JC, Koehler KJ, Birt DF. Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol Carcinog 2000;28:102-10.  Back to cited text no. 27
Rao CV, Desai D, Kaul B, Amin S, Reddy BS. Effect of caffeic acid esters on carcinogen-induced mutagenicity and human colon adenocarcinoma cell growth. Chem Biol Interact 1992;84:277-90.  Back to cited text no. 28
Chung TW, Moon SK, Chang YC, Ko JH, Lee YC, Cho G, et al. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: Complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J 2004;18:1670-81.  Back to cited text no. 29
Chiang EP, Tsai SY, Kuo YH, Pai MH, Chiu HL, Rodriguez RL, et al. Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS One 2014;9:e99631.  Back to cited text no. 30
Li NG, Shi ZH, Tang YP, Duan JA. Selective matrix metalloproteinase inhibitors for cancer. Curr Med Chem Anticancer Agents 2009;16:3805-27.  Back to cited text no. 31
Nemunaitis J, Poole C, Primrose J, Rosemurgy A, Malfetano J, Brown P, et al. Combined analysis of studies of the effects of the matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer: Selection of a biologically active and tolerable dose for longer-term studies. Clin Cancer Res 1998;4:1101-9.  Back to cited text no. 32
Lindenmeyer F, Li H, Menashi S, Soria C, Lu H. Apigenin acts on the tumor cell invasion process and regulates protease production. Nutr Cancer 2001;39:139-47.  Back to cited text no. 33
Ng SH. Characterization of Colon Cancer Cell Culture Based Screening Assay to Study Effects of Phenolic Acids. Thesis for Ph.D, University of Saskatchewan, Saskatoon, USA; 2011.  Back to cited text no. 34