Distribution of the Strains of Multidrug-resistant, Extensively Drug-resistant, and Pandrug-resistant Pseudomonas aeruginosa Isolates from Burn Patients

Document Type : Original Article


1 Department of Microbiology, School of Medicine, Imammosa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Infectious Disease Research, Imammosa Kazem Hospital, Isfahan University of Medical Sciences, Isfahan, Iran


Background: Pseudomonas aeruginosa is an opportunistic and Gram-negative pathogen that is used as the most important factor in burn wound infections, and due to the rapid acquisition of multidrug resistance (MDR), it causes high mortality rates in these sectors. Thus, diagnosis and assessment of antibiotic resistance patterns are very important in these patients. The aim of this study was to evaluate antibiotic resistance pattern and determining P. aeruginosa MDR. Materials and Methods: In this study, phenotypic, biochemical, and polymerase chain reaction tests were used to identify P. aeruginosa from 120 wound burn samples that 96 samples were detected to P. aeruginosa species. In the next step, according to the Clinical and Laboratory Standard Institute standard guidelines, antibiogram test was performed by disk diffusion method for amikacin, ciprofloxacin, norfloxacin, gentamicin, cefepime, aztreonam, meropenem, colistin, ceftazidime, and piperacillin-tazobactam antibiotics. Antibiotic data were analyzed by WHONET software; finally, the rate of antibiotic resistance and MDR strains was determined. Results: The highest antibiotic resistance belonged to amikacin (94.8%) and norfloxacin (90.6%); in contrast, colistin (8.3%) had the lowest and the MDR strains were MDR (95.8%) and extensively drug resistance (XDR) (87.5%). Conclusion: In this study, there was MDR with an alarming rate including MDR (95.8%), XDR (87.5%), and pan-drug resistance (0%). As a result, given antibiotics to patients should be controlled by the antibiogram results to avoid increasing MDR strains.


Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000;406:959-64.  Back to cited text no. 1
Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2013;41:1-20.  Back to cited text no. 2
Rossolini GM, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 2005;11 Suppl 4:17-32.  Back to cited text no. 3
Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2012;76:46-65.  Back to cited text no. 4
Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002;184:1140-54.  Back to cited text no. 5
Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 2000;288:1251-4.  Back to cited text no. 6
Moghoofei M, Fazeli H, Poursina F, Nasr Esfahani B, Moghim S, Vaez H, et al. Morphological and bactericidal effects of amikacin, meropenem and imipenem on Pseudomonas aeruginosa. Jundishapur J Microbiol 2015;8:e25250.  Back to cited text no. 7
Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin Infect Dis 2002;34:634-40.  Back to cited text no. 8
Maleknezhad P, Aligholi M, Moosavi S. Study of pseudomonas aeroginosa resistance to penicillines, cephalosporins and aminoglycosides. Tehran Univ Med J TUMS Publ 1998;56:23-8.  Back to cited text no. 9
Japoni A, Alborzi A, Kalani M, Nasiri J, Hayati M, Farshad S. Susceptibility patterns and cross-resistance of antibiotics against Pseudomonas aeruginosa isolated from burn patients in the South of Iran. Burns 2006;32:343-7.  Back to cited text no. 10
Nikokar I, Tishayar A, Flakiyan Z, Alijani K, Rehana-Banisaeed S, Hossinpour M, et al. Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran J Microbiol 2013;5:36-41.  Back to cited text no. 11
Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007;67:351-68.  Back to cited text no. 12
Morales E, Cots F, Sala M, Comas M, Belvis F, Riu M, et al. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv Res 2012;12:1.  Back to cited text no. 13
Biswal I, Arora BS, Kasana D, Neetushree. Incidence of multidrug resistant Pseudomonas aeruginosa isolated from burn patients and environment of teaching institution. J Clin Diagn Res 2014;8:DC26-9.  Back to cited text no. 14
Douglas MW, Mulholland K, Denyer V, Gottlieb T. Multi-drug resistant Pseudomonas aeruginosa outbreak in a burns unit – An infection control study. Burns 2001;27:131-5.  Back to cited text no. 15
Vaez H, Faghri J, Isfahani BN, Moghim S, Yadegari S, Fazeli H, et al. Efflux pump regulatory genes mutations in multidrug resistance Pseudomonas aeruginosa isolated from wound infections in Isfahan hospitals. Adv Biomed Res 2014;3:117.  Back to cited text no. 16
Pillar CM, Hobden JA. Pseudomonas aeruginosa exotoxin A and keratitis in mice. Invest Ophthalmol Vis Sci 2002;43:1437-44.  Back to cited text no. 17
Mohammadimehr M, Feizabadi M, Bahadori A. Antibiotic resistance pattern of Gram negative bacilli caused nosocomial infections in ICUs in khanevadeh and golestan hospital in Tehran-2007. Ann Mil Health Sci Res 2011;8:283-90.  Back to cited text no. 18
Lari AR, Alaghehbandan R, Nikui R. Epidemiological study of 3341 burns patients during three years in Tehran, Iran. Burns 2000;26:49-53.  Back to cited text no. 19
Zolfaghari M, Motlagh M, Aghaiee S, Heidarpoor A. Bacterial elements affecting infections after burn in nequiee-hedaiati Burn hospital, Ghom. J Ghom Univ Med Sci 2011;5:3.  Back to cited text no. 20
Agnihotri N, Gupta V, Joshi RM. Aerobic bacterial isolates from burn wound infections and their antibiograms – A five-year study. Burns 2004;30:241-3.  Back to cited text no. 21
Mehta M, Dutta P, Gupta V. Bacterial isolates from burn wound infections and their antibiograms: A eight-year study. Indian J Plast Surg 2007;40:25.  Back to cited text no. 22
  [Full text]  
Poole K. Efflux-mediated resistance to fluoroquinolones in Gram-negative bacteria. Antimicrob Agents Chemother 2000;44:2233-41.  Back to cited text no. 23
Van Bambeke F, Balzi E, Tulkens PM. Antibiotic efflux pumps. Biochem Pharmacol 2000;60:457-70.  Back to cited text no. 24
Strateva T, Ouzounova-Raykova V, Markova B, Todorova A, Marteva-Proevska Y, Mitov I. Problematic clinical isolates of Pseudomonas aeruginosa from the university hospitals in Sofia, Bulgaria: Current status of antimicrobial resistance and prevailing resistance mechanisms. J Med Microbiol 2007;56(Pt 7):956-63.  Back to cited text no. 25
Karlowsky JA, Jones ME, Thornsberry C, Evangelista AT, Yee YC, Sahm DF. Stable antimicrobial susceptibility rates for clinical isolates of Pseudomonas aeruginosa from the 2001-2003 tracking resistance in the United States today surveillance studies. Clin Infect Dis 2005;40 Suppl 2:S89-98.  Back to cited text no. 26
Mirsalehian A, Feizabadi M, Nakhjavani FA, Jabalameli F, Goli H, Kalantari N. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns 2010;36:70-4.  Back to cited text no. 27
Ranjbar R, Owlia P, Saderi H, Mansouri S, Jonaidi-Jafari N, Izadi M, et al. Characterization of Pseudomonas aeruginosa strains isolated from burned patients hospitalized in a major burn center in Tehran, Iran. Acta Med Iran 2011;49:675-9.  Back to cited text no. 28
Chayakulkeeree M, Junsriwong P, Keerasuntonpong A, Tribuddharat C, Thamlikitkul V. Epidemiology of extended-spectrum beta-lactamase producing Gram-negative bacilli at Siriraj Hospital, Thailand, 2003. Southeast Asian J Trop Med Public Health 2005;36:1503-9.  Back to cited text no. 29
Kaushik R, Kumar S, Sharma R, Lal P. Bacteriology of burn wounds – The first three years in a new burn unit at the Medical College Chandigarh. Burns 2001;27:595-7.  Back to cited text no. 30
Song W, Lee KM, Kang HJ, Shin DH, Kim DK. Microbiologic aspects of predominant bacteria isolated from the burn patients in Korea. Burns 2001;27:136-9.  Back to cited text no. 31
Ozumba UC, Jiburum BC. Bacteriology of burn wounds in Enugu, Nigeria. Burns 2000;26:178-80.  Back to cited text no. 32
Tsakris A, Vatopoulos AC, Tzouvelekis LS, Legakis NJ. Diversity of resistance phenotypes and plasmid analysis in multi-resistant 0:12 Pseudomonas aeruginosa. Eur J Epidemiol 1992;8:865-70.  Back to cited text no. 33
Gad GF, El-Domany RA, Zaki S, Ashour HM. Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: Prevalence, antibiogram and resistance mechanisms. J Antimicrob Chemother 2007;60:1010-7.  Back to cited text no. 34
Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the North West of Pakistan. Burns 2009;35:1020-5.  Back to cited text no. 35
Peña C, Gómez-Zorrilla S, Oriol I, Tubau F, Dominguez MA, Pujol M, et al. Impact of multidrug resistance on Pseudomonas aeruginosa ventilator-associated pneumonia outcome: Predictors of early and crude mortality. Eur J Clin Microbiol Infect Dis 2013;32:413-20.  Back to cited text no. 36
Fazeli H, Bafghi MF, Faghri J, Akbari R. Molecular study of PER and VEB genes is multidrug resistant Pseudomonas aeruginosa isolated. J Kerman Univ Med Sci 2012;19:345-53.  Back to cited text no. 37
Rahimzadeh Torabi L, Doudi M, Golshani Z. The frequency of blaIMP and blaVIM carbapenemase genes in clinical isolates of Pseudomonas aeruginosa in Isfahan medical centers. Med J Mashhad Univ Med Sci 2016;59:139-47.  Back to cited text no. 38
Golshani ZA, Sharifzadeh VA, Ali. The prevalence of VEB1 beta-lactamase gene in Pseudomonas aeruginosa isolated from nosocomial isolates with multi drug resistant. Sci Mag Yafte 2014;16:91-7. [Persian].  Back to cited text no. 39
Fazeli H, Havaei SA, Solgi H, Shokri D, Motallebirad T. Pattern of antibiotic resistance in pesudomonas aeruginosa isolated from Intensive Care Unit, Isfahan, Iran. J Isfahan Med Sch 2013;31:232.  Back to cited text no. 40
Altoparlak U, Aktas F, Celebi D, Ozkurt Z, Akcay MN. Prevalence of metallo-β-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates. Burns 2005;31:707-10.  Back to cited text no. 41
Rahimi B, Shojapour M, Sadeghi A, Pourbabayi AA. The study of the antibiotic resistance pattern of Pseudomonas aeruginosa strains isolated from hospitalized patients in Arak. Arak Med Univ J 2012;15:8-14.  Back to cited text no. 42
Nakhjavani A. Prevalence of extended spectrum beta lactamases among strains of Pseudomonas aeruginosa isolated from burn patients. Tehran Univ Med J TUMS Publ 2008;66:333-7.  Back to cited text no. 43
Adabi M, Talebi Taher M, Arbabi L, Afshar M, Fathizadeh S, Minaeian S, et al. Determination of antibiotic resistance pattern of Pseudomonas aeruginosa strains isolated from patients with burn wounds. J Ardabil Univ Med Sci 2015;15:66-74.  Back to cited text no. 44
Kumar R, Srivastava P. Detection and antimicrobial susceptibility pattern of Pseudomonas aeruginosa isolates in various clinical samples with special reference to metallo beta lactamase from a tertiary care hospital in Jaipur, India. Natl J Med Res 2014;4:128-31.  Back to cited text no. 45
Shawar RM, MacLeod DL, Garber RL, Burns JL, Stapp JR, Clausen CR, et al. Activities of tobramycin and six other antibiotics against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 1999;43:2877-80.  Back to cited text no. 46