Document Type : Original Article
Authors
1 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan; Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan; Gerfa Namayesh Azmayesh (GENAZMA) Science and Research Institute, Isfahan, Iran
Abstract
Background: One of the gene expression regulatory mechanisms is mediated by small noncoding RNAs called microRNA (miRNA). They interact with a recognition sequence located mostly in 3'-untranslated regions (3'-UTRs) of mRNAs. Polymorphisms in miRNAs recognition sequences could affect gene expression which in turn may alter disease susceptibility. SET8, a member of the SET domain-containing methyltransferase, acts in a variety of biological processes such as genomic stability. Here, we report correlation of rs16917496 polymorphism, located in the recognition sequence of miR-502 within 3'-UTR of SET8, with colorectal cancer (CRC) in Iranians. Materials and Methods: One hundred and seventy CRC patients and 170 noncancer counterparts were recruited in this case–control study. Genotyping of rs16917496 was performed using polymerase chain reaction-restriction fragment length polymorphism method. Results: There was no significant association of rs16917496 with CRC in population under study (P value for genotype and allele distribution were >0.05). However, stratification analysis based on smoking status revealed that TT+TC genotypes of SET8 rs16917496 are strongly associated with increased risk of CRC (odds ratio: 5.8, 95% confidence interval: 1.37–24.34, P - 0.005) in smoker subgroup. Conclusion: Correlation of rs16917496 T allele with CRC in smokers is emphasizing the importance of individuals' genotype in the recruitment of adverse health hazards of smoking more profoundly for certain people compared to others.
Keywords
1. |
Huang SH, Chao Y, Wu YY, Luo JC, Kao CH, Yen SH, et al. Concurrence of UGT1A polymorphism and end-stage renal disease leads to severe toxicities of irinotecan in a patient with metastatic colon cancer. Tumori 2011;97:243-7. [PUBMED] |
2. |
Chae YS, Kim JG, Lee SJ, Kang BW, Lee YJ, Park JY, et al. A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. Anticancer Res 2013;33:3233-9. [PUBMED] |
3. |
Saito R, Suzuki H, Yamada T, Endo S, Moriwaki T, Ueno T, et al. Predicting skin toxicity according to EGFR polymorphisms in patients with colorectal cancer receiving antibody against EGFR. Anticancer Res 2013;33:4995-8. [PUBMED] |
4. |
Bhaumik P, Gopalakrishnan C, Kamaraj B, Purohit R. Single nucleotide polymorphisms in microRNA binding sites: Implications in colorectal cancer. ScientificWorldJournal 2014;2014:547154. [PUBMED] |
5. | |
6. |
Kolahdoozan S, Sadjadi A, Radmard AR, Khademi H. Five common cancers in Iran. Arch Iran Med 2010;13:143-6. [PUBMED] |
7. |
Hosseini SV, Izadpanah A, Yarmohammadi H. Epidemiological changes in colorectal cancer in Shiraz, Iran: 1980-2000. ANZ J Surg 2004;74:547-9. [PUBMED] |
8. | |
9. |
Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 2007;39:984-8. [PUBMED] |
10. | |
11. | |
12. |
Daraei A, Salehi R, Salehi M, Emami MH, Janghorbani M, Mohamadhashem F, et al. Effect of rs6983267 polymorphism in the 8q24 region and rs4444903 polymorphism in EGF gene on the risk of sporadic colorectal cancer in Iranian population. Med Oncol 2012;29:1044-9. [PUBMED] |
13. |
Wu CZ, Ni XJ, Zheng SL, Yang YR, Xia P, Zeng YJ, et al. A fast SSP-PCR method for genotyping the ATP-binding cassette subfamily B member 1 gene C3435T and G2677T polymorphisms in Chinese transplant recipients. Tumori 2009;95:338-42. [PUBMED] |
14. |
Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis 2008;29:579-84. [PUBMED] |
15. |
Manikandan M, Munirajan AK. Single nucleotide polymorphisms in microRNA binding sites of oncogenes: Implications in cancer and pharmacogenomics. OMICS 2014;18:142-54. [PUBMED] |
16. |
Ahangari F, Salehi R, Salehi M, Khanahmad H. A miRNA-binding site single nucleotide polymorphism in the 3'-UTR region of the NOD2 gene is associated with colorectal cancer. Med Oncol 2014;31:173. [PUBMED] |
17. | |
18. | |
19. | |
20. | |
21. | |
22. | |
23. | |
24. | |
25. | |
26. | |
27. | |
28. | |
29. | |
30. | |
31. | |
32. | |
33. | |
34. | |
35. | |
36. | |
37. |