The Value of Multi-slice Computed Tomography Compared to Conventional Coronary Angiography for Detecting In-stent Restenosis

Document Type : Original Article


Department of Radiology, Isfahan University of Medical Sciences, Isfahan, Iran


Background: Diagnostic value of multi-slice computed tomography (MSCT) for detecting in-stent restenosis in comparison with conventional coronary angiography remained uncertain. The present study aimed to determine the value of MSCT for detecting in-stent restenosis.Materials and Methods: This historical cohort study was included 226 patients with the history of percutaneous coronary intervention from 2000 to 2014 that referred to MSCT Unit at Alzahra Heart Center in Isfahan. The subjects were followed-up by telephone with regard to performing coronary angiography up to 3 months after MSCT and their status about cardiac events. Results: Among all participants, 63 stents (27.9%) underwent coronary angiography up to 3 months after MSCT that 2 stents in left circumflex artery (LCX) assessment, 2 in left anterior descending (LAD) assessments and none in right coronary artery (RCA) assessment were uninterpretable. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of MSCT was 92.9%, 66.6%. 92.9%, 66.6%, and 88.2%, respectively for detection of occlusion in LCX stents, 100%, 100%, 100%, 100%, and 100%, respectively for detection of occlusion in LAD stents, and 80.0%, 0.0%, 80.0%, 0.0%, and 66.7%, respectively for detection of occlusion in RCA stents. Overall, MSCT had sensitivity of 93.8%, specificity of 70.0%, PPV of 93.8%, NPV of 70.0%, and accuracy 89.7% for detection of coronary stent restenosis. Conclusion: MSCT has high diagnostic value for detecting in-stent restenosis. Diagnostic accuracy of MSCT for detecting stent restenosis is considerably different between the coronary arteries with the highest diagnostic values for LAD and the lowest diagnostic values for RCA.


Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med 1994;331:496-501.  Back to cited text no. 1
Jensen JK, Jensen LO, Terkelsen CJ, Lassen JF, Tilsted HH, Hansen KN, et al. Incidence of definite stent thrombosis or in-stent restenosis after drug-eluting stent implantation for treatment of coronary in-stent restenosis: From Western Denmark Heart Registry. Catheter Cardiovasc Interv 2013;81:260-5.  Back to cited text no. 2
Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB. In-stent restenosis: Contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 1998;31:224-30.  Back to cited text no. 3
Shah PK. Inflammation, neointimal hyperplasia, and restenosis: As the leukocytes roll, the arteries thicken. Circulation 2003;107:2175-7.  Back to cited text no. 4
Chen J, Chen Y, Tian F, Han Y, Jing J, Liu J, et al. Predictors of in-stent restenosis in coronary heart disease patients complicating with diabetes mellitus within 2 years after drug-eluting stents implantation. Zhonghua Xin Xue Guan Bing Za Zhi 2014;42:14-8.  Back to cited text no. 5
Cassese S, Byrne RA, Tada T, Pinieck S, Joner M, Ibrahim T, et al. Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart 2014;100:153-9.  Back to cited text no. 6
Schukro C, Gruska M, Syeda B, Winkler M, Poradek T, Sipötz H, et al. Duration of development of symptomatic in-stent restenosis correlates with the stent-to-vessel-diameter ratio: An intravascular ultrasound study. Coron Artery Dis 2007;18:507-12.  Back to cited text no. 7
Dangas G, Kuepper F. Cardiology patient page. Restenosis: Repeat narrowing of a coronary artery: Prevention and treatment. Circulation 2002;105:2586-7.  Back to cited text no. 8
Yang ZY, Wang Q, Guo SX, Zhang Y, Fang XM, Cui ZM. Value of detecting in-stent restenosis by dual source coronary computed tomography coronary angiography. Zhonghua Xin Xue Guan Bing Za Zhi 2011;39:49-52.  Back to cited text no. 9
Galassi AR, Marzá F, Azzarelli S, Tomasello SD. Role of stress myocardial scintigraphy in the evaluation of incompletely revascularized post-PCI patients. Int J Mol Imaging 2011;2011:180936.  Back to cited text no. 10
Elhendy A, Tsutsui JM, O'Leary EL, Xie F, Majeed F, Porter TR. Evaluation of restenosis and extent of coronary artery disease in patients with previous percutaneous coronary interventions by dobutamine stress real-time myocardial contrast perfusion imaging. Heart 2006;92:1480-3.  Back to cited text no. 11
Oncel D, Oncel G, Karaca M. Coronary stent patency and in-stent restenosis: Determination with 64-section multidetector CT coronary angiography – Initial experience. Radiology 2007;242:403-9.  Back to cited text no. 12
Van Mieghem CA, Cademartiri F, Mollet NR, Malagutti P, Valgimigli M, Meijboom WB, et al. Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: A comparison with conventional coronary angiography and intravascular ultrasound. Circulation 2006;114:645-53.  Back to cited text no. 13
Rief M, Zimmermann E, Stenzel F, Martus P, Stangl K, Greupner J, et al. Computed tomography angiography and myocardial computed tomography perfusion in patients with coronary stents: Prospective intraindividual comparison with conventional coronary angiography. J Am Coll Cardiol 2013;62:1476-85. Erratum in: J Am Coll Cardiol 2014;63:944.  Back to cited text no. 14
Chao SP, Law WY, Kuo CJ, Hung HF, Cheng JJ, Lo HM, et al. The diagnostic accuracy of 256-row computed tomographic angiography compared with invasive coronary angiography in patients with suspected coronary artery disease. Eur Heart J 2010;31:1916-23.  Back to cited text no. 15
Sajjadieh A, Hekmatnia A, Keivani M, Asoodeh A, Pourmoghaddas M, Sanei H. Diagnostic performance of 64-row coronary CT angiography in detecting significant stenosis as compared with conventional invasive coronary angiography. ARYA Atheroscler 2013;9:157-63.  Back to cited text no. 16
Chung SH, Kim YJ, Hur J, Lee HJ, Choe KO, Kim TH, et al. Evaluation of coronary artery in-stent restenosis by 64-section computed tomography: Factors affecting assessment and accurate diagnosis. J Thorac Imaging 2010;25:57-63.  Back to cited text no. 17
Asawa K, Ueda H, Kido A. Abstract 14825: Assessment of coronary artery stent restenosis using 256-multislice computed tomography (256-MSCT): Factors affecting assessment and accurate diagnosis using clinical data and phantom study. Circulation 2014;124:A14825.  Back to cited text no. 18
Cademartiri F, Schuijf JD, Pugliese F, Mollet NR, Jukema JW, Maffei E, et al. Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol 2007;49:2204-10.  Back to cited text no. 19
Yoshimura M, Nao T, Miura T, Okada M, Nakashima Y, Fujimura T, et al. New quantitative method to diagnose coronary in-stent restenosis by 64-multislice computed tomography. J Cardiol 2015;65:57-62.  Back to cited text no. 20
Andreini D, Pontone G, Mushtaq S, Bartorelli AL, Bertella E, Trabattoni D, et al. Coronary in-stent restenosis: Assessment with CT coronary angiography. Radiology 2012;265:410-7.  Back to cited text no. 21
Schuijf JD, Bax JJ, Jukema JW, Lamb HJ, Warda HM, Vliegen HW, et al. Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol 2004;94:427-30.  Back to cited text no. 22
Rixe J, Achenbach S, Ropers D, Baum U, Kuettner A, Ropers U, et al. Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J 2006;27:2567-72.  Back to cited text no. 23
Rist C, von Ziegler F, Nikolaou K, Kirchin MA, Wintersperger BJ, Johnson TR, et al. Assessment of coronary artery stent patency and restenosis using 64-slice computed tomography. Acad Radiol 2006;13:1465-73.  Back to cited text no. 24
Ehara M, Kawai M, Surmely JF, Matsubara T, Terashima M, Tsuchikane E, et al. Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: Comparison with invasive coronary angiography. J Am Coll Cardiol 2007;49:951-9.  Back to cited text no. 25
Manghat N, Van Lingen R, Hewson P, Syed F, Kakani N, Cox I, et al. Usefulness of 64-detector row computed tomography for evaluation of intracoronary stents in symptomatic patients with suspected in-stent restenosis. Am J Cardiol 2008;101:1567-73.  Back to cited text no. 26
Hecht HS, Polena S, Jelnin V, Jimenez M, Bhatti T, Parikh M, et al. Stent gap by 64-detector computed tomographic angiography relationship to in-stent restenosis, fracture, and overlap failure. J Am Coll Cardiol 2009;54:1949-59.  Back to cited text no. 27
Pugliese F, Weustink AC, Van Mieghem C, Alberghina F, Otsuka M, Meijboom WB, et al. Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart 2008;94:848-54.  Back to cited text no. 28
Gaspar T, Halon DA, Lewis BS, Adawi S, Schliamser JE, Rubinshtein R, et al. Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography. J Am Coll Cardiol 2005;46:1573-9.  Back to cited text no. 29