1. |
Somerville GA, Chaussee MS, Morgan CI, Fitzgerald JR, Dorward DW, Reitzer LJ, et al. Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival. Infect Immun 2002;70:6373-82.
|
2. |
Nelson JL, Rice KC, Slater SR, Fox PM, Archer GL, Bayles KW, et al. Vancomycin-intermediate Staphylococcus aureus strains have impaired acetate catabolism: Implications for polysaccharide intercellular adhesin synthesis and autolysis. Antimicrob Agents Chemother 2007;51:616-22.
|
3. |
Cui L, Ma X, Sato K, Okuma K, Tenover FC, Mamizuka EM, et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol 2003;41:5-14.
|
4. |
Sifri CD, Baresch-Bernal A, Calderwood SB, von Eiff C. Virulence of Staphylococcus aureus small colony variants in the Caenorhabditis elegans infection model. Infect Immun 2006;74:1091-6.
|
5. |
Grose JH, Joss L, Velick SF, Roth JR. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci U S A 2006;103:7601-6.
|
6. |
Begley TP, Kinsland C, Mehl RA, Osterman A, Dorrestein P. The biosynthesis of nicotinamide adenine dinucleotides in bacteria. Vitam Horm 2001;61:103-19.
|
7. |
Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S. Enzymology of NAD+synthesis. Adv Enzymol Relat Areas Mol Biol 1999;73:135-82, xi.
|
8. |
Penfound T, Foster JW. NAD-dependent DNA-binding activity of the bifunctional NadR regulator of Salmonella typhimurium. J Bacteriol 1999;181:648-55.
|
9. |
Tritz GJ, Chandler JL. Recognition of a gene involved in the regulation of nicotinamide adenine dinucleotide biosynthesis. J Bacteriol 1973;114:128-36.
|
10. |
Stone TW, Addae JI. The pharmacological manipulation of glutamate receptors and neuroprotection. Eur J Pharmacol 2002;447:285-96.
|
11. |
Sorci L, Pan Y, Eyobo Y, Rodionova I, Huang N, Kurnasov O, et al. Targeting NAD biosynthesis in bacterial pathogens: Structure-based development of inhibitors of nicotinate mononucleotide adenylyltransferase NadD. Chem Biol 2009;16:849-61.
|
12. |
Feng S, Yongfu L, Ye L, Xiaoyuan W. Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin 2009;41:352-61.
|
13. |
Voet D, Voet JG. Other pathways of carbohydrate metabolism. Biochemistry. 2 nd ed. New York: John Wiley and Sons; 1995.
|
14. |
Pomposiello PJ, Bennik MH, Demple B. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 2001;183:3890-902.
|
15. |
Coleman G, Garbutt IT, Demnitz U. Ability of a Staphylococcus aureus isolate from a chronic osteomyelitic lesion to survive in the absence of air. Eur J Clin Microbiol 1983;2:595-7.
|
16. |
Foster JW, Moat AG. Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev 1980;44:83-105.
|
17. |
Shi F, Li Y, Li Y, Wang X. Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin (Shanghai) 2009;41:352-61.
|
18. |
Prasad UV, Vasu D, Kumar YN, Kumar PS, Yeswanth S, Swarupa V, et al. Cloning, expression and characterization of NADP-dependent isocitrate dehydrogenase from Staphylococcus aureus. Appl Biochem Biotechnol 2013;169:862-9.
|
19. |
Yeswanth S, Nanda Kumar Y, Venkateswara Prasad U, Swarupa V, Koteswara rao V, Venkata Gurunadha Krishna Sarma P Cloning and characterization of l-lactate dehydrogenase gene of Staphylococcus aureus. Anaerobe 2013;24:43-8.
|
20. |
Palmer T. Enzymes Biochemistry, Biotechnology and Clinical Chemistry. 1 st ed. Chichester, West Sussex, England: Horwood Publishing Ltd.; 2001.
|
21. |
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.
|
22. |
Ohta T, Hirakawa H, Morikawa K, Maruyama A, Inose Y, Yamashita A, et al. Nucleotide substitutions in Staphylococcus aureus strains, Mu50, Mu3, and N315. DNA Res 2004;11:51-6.
|
23. |
Sambrook J, Russell DW. Molecular Cloning, A Laboratory Manual. 3 rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.
|
24. |
Bramucci E, Paiardini A, Bossa F, Pascarella S. PyMod: Sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL. BMC Bioinformatics 2012;13 Suppl 4:S2.
|
25. |
Kumar PS, Kumar YN, Prasad UV, Yeswanth S, Swarupa V, Sowjenya G, et al. In silico designing and molecular docking of a potent analog against Staphylococcus aureus porphobilinogen synthase. J Pharm Bioallied Sci 2014;6:158-66.
|
26. |
Prasad UV, Swarupa V, Yeswanth S, Kumar PS, Kumar ES, Reddy KM, et al. Structural and Functional analysis of Staphylococcus aureus NADP-dependent IDH and its comparison with Bacterial and Human NADPdependent IDH. Bioinformation 2014;10:81-6.
|
27. |
Apps DK. The NAD kinases of Saccharomyces cerevisiae. Eur J Biochem 1970;13:223-30.
|
28. |
Kawai S, Mori S, Mukai T, Suzuki S, Yamada T, Hashimoto W, et al. Inorganic polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem Biophys Res Commun 2000;276:57-63.
|
29. |
Raffaelli N, Finaurini L, Mazzola F, Pucci L, Sorci L, Amici A, et al. Characterization of Mycobacterium tuberculosis NAD kinase: Functional analysis of the full-length enzyme by site-directed mutagenesis. Biochemistry 2004;43:7610-7.
|
30. |
Mori S, Kawai S, Shi F, Mikami B, Murata K. Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution. J Biol Chem 2005;280:24104-12.
|
31. |
Kawai S, Mori S, Mukai T, Hashimoto W, Murata K. Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem 2001;268:4359-65.
|
32. |
Lerner F, Niere M, Ludwig A, Ziegler M. Structural and functional characterization of human NAD kinase. Biochem Biophys Res Commun 2001;288:69-74.
|
33. |
Minard KI, McAlister-Henn L. Sources of NADPH in yeast vary with carbon source. J Biol Chem 2005;280:39890-6.
|
34. |
Outten CE, Culotta VC. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J 2003;22:2015-24.
|
35. |
Zerez CR, Moul DE, Gomez EG, Lopez VM, Andreoli AJ. Negative modulation of Escherichia coli NAD kinase by NADPH and NADH. J Bacteriol 1987;169:184-8.
|
36. |
Somerville GA, Cockayne A, Dürr M, Peschel A, Otto M, Musser JM. Synthesis and deformylation of Staphylococcus aureus delta-toxin are linked to tricarboxylic acid cycle activity. J Bacteriol 2003;185:6686-94.
|
37. |
Venkateswara Prasad U, Vasu D, Yeswanth S, Swarupa V, Sunitha MM, Choudhary A, et al. Phosphorylation controls the functioning of Staphylococcus aureus isocitrate dehydrogenase – Favours biofilm formation. J Enzyme Inhib Med Chem 2015;30:655-61.
|
38. |
Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998;339:520-32.
|