Association of Animal and Plant Proteins Intake with Hypertension in Iranian Adult Population: Isfahan Healthy Heart Program

Document Type : Original Article

Authors

1 Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

2 Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

3 Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

4 Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: There is evidence regarding the relationship between dietary proteins intake and blood pressure (BP), but they had inconsistent results. Therefore, this study was designed to assess the association between different kinds of protein intake (animal and plant protein) and BP. Materials and Methods: Data were collected from Isfahan Healthy Heart Program. We performed a cross-sectional study among 9660 randomly selected Iranian adults aged ≥19-year-old that they were selected from three large Iranian regions in 2007. A simplified validated 48-item-food frequency questionnaire was used to assess dietary intake including all kinds of protein. Systolic and diastolic BPs were measured in duplicate by trained personnel using a standard protocol. Multivariable regressions were applied to assess the relationship between protein intake and BP levels and the presence of hypertension (HTN). Results: More frequent consumption of animal, plant, and total protein intake were inversely associated with BP in a crude model (P < 0.001); however, after adjustment for potential confounders this relationship remained only for plant protein (P = 0.04). The risk of HTN occurrence decreased in the highest quintile of total and plant protein consumption by 19% (odds ratio [OR] = 0.81; confidence interval [CI]: [0.65–0.96]; P for trend = 0.004) and 18% (OR = 0.82; [CI: (0.67–0.94]; P for trend = 0.03), respectively. Conclusions: More frequent protein intake, especially plant protein consumption was inversely associated with BP and risk of HTN among Iranian adults.

Keywords

1.
Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr., et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003;42:1206-52.  Back to cited text no. 1
    
2.
Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005;365:217-23.  Back to cited text no. 2
    
3.
Shirani S, Kelishadi R, Sarrafzadegan N, Khosravi A, Sadri G, Amani A, et al. Awareness, treatment and control of hypertension, dyslipidaemia and diabetes mellitus in an Iranian population: The IHHP study. East Mediterr Health J 2009;15:1455-63.  Back to cited text no. 3
    
4.
Vasdev S, Stuckless J, Richardson V. Role of the immune system in hypertension: Modulation by dietary antioxidants. Int J Angiol 2011;20:189-212.  Back to cited text no. 4
    
5.
Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM; American Heart Association. Dietary approaches to prevent and treat hypertension: A scientific statement from the American Heart Association. Hypertension 2006;47:296-308.  Back to cited text no. 5
    
6.
Dickinson HO, Mason JM, Nicolson DJ, Campbell F, Beyer FR, Cook JV, et al. Lifestyle interventions to reduce raised blood pressure: A systematic review of randomized controlled trials. J Hypertens 2006;24:215-33.  Back to cited text no. 6
    
7.
Ferrara LA, Raimondi AS, d'Episcopo L, Guida L, Dello Russo A, Marotta T. Olive oil and reduced need for antihypertensive medications. Arch Intern Med 2000;160:837-42.  Back to cited text no. 7
    
8.
Salehi-Abargouei A, Maghsoudi Z, Shirani F, Azadbakht L. Effects of dietary approaches to stop hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases – Incidence: A systematic review and meta-analysis on observational prospective studies. Nutrition 2013;29:611-8.  Back to cited text no. 8
    
9.
Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001;344:3-10.  Back to cited text no. 9
    
10.
Elliott P, Stamler J, Dyer AR, Appel L, Dennis B, Kesteloot H, et al. Association between protein intake and blood pressure: The INTERMAP study. Arch Intern Med 2006;166:79-87.  Back to cited text no. 10
    
11.
Murray BA, FitzGerald RJ. Angiotensin converting enzyme inhibitory peptides derived from food proteins: Biochemistry, bioactivity and production. Curr Pharm Des 2007;13:773-91.  Back to cited text no. 11
    
12.
He J, Gu D, Wu X, Chen J, Duan X, Chen J, et al. Effect of soybean protein on blood pressure: A randomized, controlled trial. Ann Intern Med 2005;143:1-9.  Back to cited text no. 12
    
13.
Vasdev S, Gill V. The antihypertensive effect of arginine. Int J Angiol 2008;17:7-22.  Back to cited text no. 13
    
14.
Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Craighead L, Lin PH, et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: The ENCORE study. Arch Intern Med 2010;170:126-35.  Back to cited text no. 14
    
15.
Iseki K, Iseki C, Itoh K, Sanefuji M, Uezono K, Ikemiya Y, et al. Estimated protein intake and blood pressure in a screened cohort in Okinawa, Japan. Hypertens Res 2003;26:289-94.  Back to cited text no. 15
    
16.
Liu L, Ikeda K, Sullivan DH, Ling W, Yamori Y. Epidemiological evidence of the association between dietary protein intake and blood pressure: A meta-analysis of published data. Hypertens Res 2002;25:689-95.  Back to cited text no. 16
    
17.
Liu ZM, Ho SC, Chen YM, Woo J. Effect of soy protein and isoflavones on blood pressure and endothelial cytokines: A 6-month randomized controlled trial among postmenopausal women. J Hypertens 2013;31:384-92.  Back to cited text no. 17
    
18.
Sarrafzadegan N, Kelishadi R, Sadri G, Malekafzali H, Pourmoghaddas M, Heidari K, et al. Outcomes of a comprehensive healthy lifestyle program on cardiometabolic risk factors in a developing country: The Isfahan Healthy Heart Program. Arch Iran Med 2013;16:4-11.  Back to cited text no. 18
    
19.
Mohammadifard N, Kelishadi R, Safavi M, Sarrafzadegan N, Sajadi F, Sadri GH, et al. Effect of a community-based intervention on nutritional behaviour in a developing country setting: The Isfahan Healthy Heart Programme. Public Health Nutr 2009;12:1422-30.  Back to cited text no. 19
    
20.
Warnick GR, Benderson J, Albers JJ. Dextran sulfate-Mg2+precipitation procedure for quantitation of high-density-lipoprotein cholesterol. Clin Chem 1982;28:1379-88.  Back to cited text no. 20
    
21.
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499-502.  Back to cited text no. 21
    
22.
Mohammadifard N, Sarrafzadegan N, Nouri F, Sajjadi F, Alikhasi H, Maghroun M, et al. Using factor analysis to identify dietary patterns in Iranian adults: Isfahan Healthy Heart Program. Int J Public Health 2012;57:235-41.  Back to cited text no. 22
    
23.
Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr., et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. JAMA 2003;289:2560-72.  Back to cited text no. 23
    
24.
Yang G, Shu XO, Jin F, Zhang X, Li HL, Li Q, et al. Longitudinal study of soy food intake and blood pressure among middle-aged and elderly Chinese women. Am J Clin Nutr 2005;81:1012-7.  Back to cited text no. 24
    
25.
Altorf-van der Kuil W, Engberink MF, Vedder MM, Boer JM, Verschuren WM, Geleijnse JM. Sources of dietary protein in relation to blood pressure in a general Dutch population. PLoS One 2012;7:e30582.  Back to cited text no. 25
    
26.
Wang YF, Yancy WS Jr., Yu D, Champagne C, Appel LJ, Lin PH. The relationship between dietary protein intake and blood pressure: Results from the PREMIER study. J Hum Hypertens 2008;22:745-54.  Back to cited text no. 26
    
27.
Rebholz CM, Friedman EE, Powers LJ, Arroyave WD, He J, Kelly TN. Dietary protein intake and blood pressure: A meta-analysis of randomized controlled trials. Am J Epidemiol 2012;176 Suppl 7:S27-43.  Back to cited text no. 27
    
28.
Altorf-van der Kuil W, Engberink MF, Brink EJ, van Baak MA, Bakker SJ, Navis G, et al. Dietary protein and blood pressure: A systematic review. PLoS One 2010;5:e12102.  Back to cited text no. 28
    
29.
Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3rdet al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: Results of the OmniHeart randomized trial. JAMA 2005;294:2455-64.  Back to cited text no. 29
    
30.
Altorf-van der Kuil W, Engberink MF, Ijpma I, Verberne LD, Toeller M, Chaturvedi N, et al. Protein intake in relation to risk of hypertension and microalbuminuria in patients with type 1 diabetes: The EURODIAB prospective complications study. J Hypertens 2013;31:1151-9.  Back to cited text no. 30
    
31.
Umesawa M, Sato S, Imano H, Kitamura A, Shimamoto T, Yamagishi K, et al. Relations between protein intake and blood pressure in Japanese men and women: The circulatory risk in communities study (CIRCS). Am J Clin Nutr 2009;90:377-84.  Back to cited text no. 31
    
32.
Stamler J, Elliott P, Kesteloot H, Nichols R, Claeys G, Dyer AR, et al. Inverse relation of dietary protein markers with blood pressure. Findings for 10,020 men and women in the INTERSALT study. INTERSALT Cooperative Research Group. INTERnational study of SALT and blood pressure. Circulation 1996;94:1629-34.  Back to cited text no. 32
    
33.
Anderson GH. Proteins and amino acids: Effects on the sympathetic nervous system and blood pressure regulation. Can J Physiol Pharmacol 1986;64:863-70.  Back to cited text no. 33
    
34.
Sved AF, Fernstrom JD, Wurtman RJ. Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously hypertensive rats. Proc Natl Acad Sci U S A 1979;76:3511-4.  Back to cited text no. 34
    
35.
Stamler J, Caggiula A, Grandits GA, Kjelsberg M, Cutler JA. Relationship to blood pressure of combinations of dietary macronutrients. Findings of the multiple risk factor intervention trial (MRFIT). Circulation 1996;94:2417-23.  Back to cited text no. 35
    
36.
Paddon-Jones D, Westman E, Mattes RD, Wolfe RR, Astrup A, Westerterp-Plantenga M. Protein, weight management, and satiety. Am J Clin Nutr 2008;87:1558S-61S.  Back to cited text no. 36
    
37.
Makris AP, Borradaile KE, Oliver TL, Cassim NG, Rosenbaum DL, Boden GH, et al. The individual and combined effects of glycemic index and protein on glycemic response, hunger, and energy intake. Obesity (Silver Spring) 2011;19:2365-73.  Back to cited text no. 37
    
38.
Zhou B, Zhang X, Zhu A, Zhao L, Zhu S, Ruan L, et al. The relationship of dietary animal protein and electrolytes to blood pressure: A study on three Chinese populations. Int J Epidemiol 1994;23:716-22.  Back to cited text no. 38
    
39.
Streppel MT, Arends LR, van't Veer P, Grobbee DE, Geleijnse JM. Dietary fiber and blood pressure: A meta-analysis of randomized placebo-controlled trials. Arch Intern Med 2005;165:150-6.  Back to cited text no. 39
    
40.
Cunha AR, Umbelino B, Correia ML, Neves MF. Magnesium and vascular changes in hypertension. Int J Hypertens 2012;2012:754250.  Back to cited text no. 40